ZH
Zhigang Hong
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(100% Open Access)
Cited by:
2,722
h-index:
31
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer

Jalees Rehman et al.Feb 9, 2012
Mitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission. Lung tumor tissue samples from patients demonstrated a similar increase in Drp-1 and decrease in Mfn-2 when compared to adjacent healthy lung. Complementary approaches to restore mitochondrial network formation in lung cancer cells by overexpression of Mfn-2, Drp-1 inhibition, or Drp-1 knockdown resulted in a marked reduction of cancer cell proliferation and an increase in spontaneous apoptosis. The number of cancer cells in S phase decreased from 32.4 ± 0.6 to 6.4 ± 0.3% with Drp-1 inhibition (P< 0.001). In a xenotransplantation model, Mfn-2 gene therapy or Drp-1 inhibition could regress tumor growth. The tumor volume decreased from 205.6 ± 59 to 70.6 ± 15 mm3 (P<0.05) with Mfn-2 overexpression and from 186.0 ± 19 to 87.0 ± 6 mm3 (P<0.01) with therapeutic Drp-1 inhibition. Impaired fusion and enhanced fission contribute fundamentally to the proliferation/apoptosis imbalance in cancer and constitute promising novel therapeutic targets.—Rehman, J., Zhang, H. J., Toth, P. T., Zhang, Y., Marsboom, G., Hong, Z., Salgia, R., Husain, A. N., Wietholt, C., Archer, S. L. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J. 26, 2175-2186 (2012). www.fasebj.org
0
Citation509
0
Save
0

Dynamin-Related Protein 1–Mediated Mitochondrial Mitotic Fission Permits Hyperproliferation of Vascular Smooth Muscle Cells and Offers a Novel Therapeutic Target in Pulmonary Hypertension

Glenn Marsboom et al.Apr 18, 2012
Rationale: Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. Objective: We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. Methods and Results: Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1–dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl 2 or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. Conclusions: DRP-1–mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.
0

SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress

Sadhana Samant et al.Dec 17, 2013
Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1.
0

Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury

Kwong Cheng et al.Oct 8, 2017
Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.
0

Dynamin‐related protein 1 (Drp1)‐mediated diastolic dysfunction in myocardial ischemia‐reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission

Willard Sharp et al.Sep 27, 2013
Mitochondrial fission, regulated by dynamin-related protein-1 (Drp1), is a newly recognized determinant of mitochondrial function, but its contribution to left ventricular (LV) impairment following ischemia-reperfusion (IR) injury is unknown. We report that Drp1 activation during IR results in LV dysfunction and that Drp1 inhibition is beneficial. In both isolated neonatal murine cardiomyocytes and adult rat hearts (Langendorff preparation) mitochondrial fragmentation and swelling occurred within 30 min of IR. Drp1-S637 (serine 637) dephosphorylation resulted in Drp1 mitochondrial translocation and increased mitochondrial fission. The Drp1 inhibitor Mdivi-1 preserved mitochondrial morphology, reduced cytosolic calcium, and prevented cell death. Drp1 siRNA similarly preserved mitochondrial morphology. In Langendorff hearts, Mdivi-1 reduced mitochondrial reactive oxygen species, improved LV developed pressure (92±5 vs. 28±10 mmHg, P<0.001), and lowered LV end diastolic pressure (10±1 vs. 86±13 mmHg, P<0.001) following IR. Mdivi-1 was protective if administered prior to or following ischemia. Because Drp1-S637 dephosphorylation is calcineurin sensitive, we assessed the effects of a calcineurin inhibitor, FK506. FK506 treatment prior to IR prevented Drp1-S637 dephosphorylation and preserved cardiac function. Likewise, therapeutic hypothermia (30°C) inhibited Drp1-S637 dephosphorylation and preserved mitochondrial morphology and myocardial function. Drp1 inhibition is a novel strategy to improve myocardial function following IR.
0

Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation

Ankit Jambusaria et al.Jan 16, 2020
Blood vessels are lined by endothelial cells engaged in distinct organ-specific functions but little is known about their characteristic gene expression profiles. RNA-Sequencing of the brain, lung, and heart endothelial translatome identified specific pathways, transporters and cell-surface markers expressed in the endothelium of each organ, which can be visualized at http://www.rehmanlab.org/ribo. We found that endothelial cells express genes typically found in the surrounding tissues such as synaptic vesicle genes in the brain endothelium and cardiac contractile genes in the heart endothelium. Complementary analysis of endothelial single cell RNA-Seq data identified the molecular signatures shared across the endothelial translatome and single cell transcriptomes. The tissue-specific heterogeneity of the endothelium is maintained during systemic in vivo inflammatory injury as evidenced by the distinct responses to inflammatory stimulation. Our study defines endothelial heterogeneity and plasticity and provides a molecular framework to understand organ-specific vascular disease mechanisms and therapeutic targeting of individual vascular beds.Blood vessels supply nutrients, oxygen and other key molecules to all of the organs in the body. Cells lining the blood vessels, called endothelial cells, regulate which molecules pass from the blood to the organs they supply. For example, brain endothelial cells prevent toxic molecules from getting into the brain, and lung endothelial cells allow immune cells into the lungs to fight off bacteria or viruses.Determining which genes are switched on in the endothelial cells of major organs might allow scientists to determine what endothelial cells do in the brain, heart, and lung, and how they differ; or help scientists deliver drugs to a particular organ. If endothelial cells from different organs switch on different groups of genes, each of these groups of genes can be thought of as a ‘genetic signature’ that identifies endothelial cells from a specific organ.Now, Jambusaria et al. show that brain, heart, and lung endothelial cells have distinct genetic signatures. The experiments used mice that had been genetically modified to have tags on their endothelial cells. These tags made it possible to isolate RNA – a molecule similar to DNA that contains the information about which genes are active – from endothelial cells without separating the cells from their tissue of origin. Next, RNA from endothelial cells in the heart, brain and lung was sequenced and analyzed.The results show that each endothelial cell type has a distinct genetic signature under normal conditions and infection-like conditions. Unexpectedly, the experiments also showed that genes that were thought to only be switched on in the cells of specific tissues are also on in the endothelial cells lining the blood vessels of the tissue. For example, genes switched on in brain cells are also active in brain endothelial cells, and genes allowing heart muscle cells to pump are also on in the endothelial cells of the heart blood vessels.The endothelial cell genetic signatures identified by Jambusaria et al. can be used as “postal codes” to target drugs to a specific organ via the endothelial cells that feed it. It might also be possible to use these genetic signatures to build organ-specific blood vessels from stem cells in the laboratory. Future work will try to answer why endothelial cells serving the heart and brain use genes from these organs.
3

Selective Nanotherapeutic Targeting of the Neutrophil Subset Mediating Inflammatory Injury

Kurt Bachmaier et al.Jul 2, 2020
Inflammatory tissue injury such as acute lung injury (ALI) is a disorder that leads to respiratory failure, a major cause of morbidity and mortality worldwide. Excessive neutrophil influx is a critical pathogenic factor in the development of ALI. Here, we identify the subset of neutrophils that is responsible for ALI and lethality in polymicrobial sepsis. The pro-inflammatory neutrophil subpopulation was characterized by its unique ability to endocytose albumin nanoparticles (ANP), upregulation of pro-inflammatory cytokines and chemokines as well as the excessive production of reactive oxygen species (ROS) in models of endotoxemia and septicemia. ANP delivery of the drug piceatannol, a spleen tyrosine kinase (Syk) inhibitor, to the susceptible subset of neutrophils, prevented ALI and mortality in mice subjected to polymicrobial infection. Targeted inhibition of Syk in ANP-susceptible neutrophils had no detrimental effect on neutrophil-dependent host defense because the subset of ANP low neutrophils effectively controlled polymicrobial infection. The results show that neutrophil heterogeneity can be leveraged therapeutically to prevent ALI without compromising host defense.
3
Citation1
0
Save
6

Computer-Vision Stabilized Intravital Imaging Reveals Lung Capillary Neutrophil Dynamics Crucial for Lung Host-Defense Function

Yoshikazu Tsukasaki et al.Apr 19, 2021
Abstract Polymorphonuclear neutrophils (PMN) are highly dynamic innate immune cells which are essential for lung host defense. However, in vivo intravital imaging in moving organs such as the lung remains challenging due to motion artifacts. Here we describe a novel intravital imaging method with high-throughput analytical capability based on a computer vision stabilization algorithm, Computer-vision-Assisted STabilized intravital imaging (CASTii). The sub-micron precision of this approach enables analysis of compartmentalized intravital PMN dynamics. We quantified in real-time a novel patrolling function of lung intracapillary circulating PMN. We also describe the dynamics of intracapillary PMN pooling (marginated PMN pool) using direct imaging of PMNs. The pool was formed by repeated catch-and-release kinetics involving PMN deformation inside microvessels during the passage of PMNs in vessels. We observed rapid PMN recruitment into the lung tissue compartments from pooled PMNs in response to alveolar chemoattract exposure. In contrast, endotoxemia-induced intracapillary sequestration of PMN impaired PMN transmigration into the alveolar space and defective phagocytosis of live bacteria. Intravital imaging of PMN dynamics with CASTii provides fundamental insights into host-defense functions of lung capillary PMN.
Load More