AO
Andreas Oberbach
Author with expertise in Brown Adipose Tissue Function and Physiology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
3,476
h-index:
28
/
i10-index:
53
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Antioxidants prevent health-promoting effects of physical exercise in humans

Michael Ristow et al.May 12, 2009
Exercise promotes longevity and ameliorates type 2 diabetes mellitus and insulin resistance. However, exercise also increases mitochondrial formation of presumably harmful reactive oxygen species (ROS). Antioxidants are widely used as supplements but whether they affect the health-promoting effects of exercise is unknown. We evaluated the effects of a combination of vitamin C (1000 mg/day) and vitamin E (400 IU/day) on insulin sensitivity as measured by glucose infusion rates (GIR) during a hyperinsulinemic, euglycemic clamp in previously untrained ( n = 19) and pretrained ( n = 20) healthy young men. Before and after a 4 week intervention of physical exercise, GIR was determined, and muscle biopsies for gene expression analyses as well as plasma samples were obtained to compare changes over baseline and potential influences of vitamins on exercise effects. Exercise increased parameters of insulin sensitivity (GIR and plasma adiponectin) only in the absence of antioxidants in both previously untrained ( P < 0.001) and pretrained ( P < 0.001) individuals. This was paralleled by increased expression of ROS-sensitive transcriptional regulators of insulin sensitivity and ROS defense capacity, peroxisome-proliferator-activated receptor gamma (PPARγ), and PPARγ coactivators PGC1α and PGC1β only in the absence of antioxidants ( P < 0.001 for all). Molecular mediators of endogenous ROS defense (superoxide dismutases 1 and 2; glutathione peroxidase) were also induced by exercise, and this effect too was blocked by antioxidant supplementation. Consistent with the concept of mitohormesis, exercise-induced oxidative stress ameliorates insulin resistance and causes an adaptive response promoting endogenous antioxidant defense capacity. Supplementation with antioxidants may preclude these health-promoting effects of exercise in humans.
0

Serum Vaspin Concentrations in Human Obesity and Type 2 Diabetes

Byung-Soo Youn et al.Nov 9, 2007
OBJECTIVE— Vaspin was identified as an adipokine with insulin-sensitizing effects, which is predominantly secreted from visceral adipose tissue in a rat model of type 2 diabetes. We have recently shown that vaspin mRNA expression in adipose tissue is related to parameters of obesity and glucose metabolism. However, the regulation of vaspin serum concentrations in human obesity and type 2 diabetes is unknown. RESEARCH DESIGN AND METHODS— For the measurement of vaspin serum concentrations, we developed an enzyme-linked immunosorbent assay (ELISA). Using this ELISA, we assessed circulating vaspin in a cross-sectional study of 187 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance and in 60 individuals with normal glucose tolerance (NGT), impaired glucose tolerance (IGT), or type 2 diabetes before and after a 4-week physical training program. RESULTS— Vaspin serum concentrations were significantly higher in female compared with male subjects. There was no difference in circulating vaspin between individuals with NGT and type 2 diabetes. In the normal glucose-tolerant group, circulating vaspin significantly correlated with BMI and insulin sensitivity. Moreover, physical training for 4 weeks resulted in significantly increased circulating vaspin levels. CONCLUSIONS— We found a sexual dimorphism in circulating vaspin. Elevated vaspin serum concentrations are associated with obesity and impaired insulin sensitivity, whereas type 2 diabetes seems to abrogate the correlation between increased circulating vaspin, higher body weight, and decreased insulin sensitivity. Low circulating vaspin correlates with a high fitness level, whereas physical training in untrained individuals causes increased vaspin serum concentrations.
0

Altered Fiber Distribution and Fiber-Specific Glycolytic and Oxidative Enzyme Activity in Skeletal Muscle of Patients With Type 2 Diabetes

Andreas Oberbach et al.Apr 1, 2006
OBJECTIVE—We investigated whether alterations of glycolytic and oxidative enzyme capacity in skeletal muscle of patients with type 2 diabetes pertain to specific muscle fibers and are associated with changes in muscle fiber composition. RESEARCH DESIGN AND METHODS—Vastus lateralis muscle was obtained by percutaneous biopsy from 10 patients with type 2 diabetes and 15 age- and BMI-matched healthy volunteers. Using cytophotometry, muscle fiber composition and fiber type–specific glycolytic and oxidative enzyme activities were measured in slow oxidative, fast oxidative glycolytic, and fast glycolytic fibers. RESULTS—In the whole muscle, oxidative activity was decreased in patients with type 2 diabetes. The slow oxidative fiber fraction was reduced by 16%, whereas the fast glycolytic fiber fraction was increased by 49% in skeletal muscle from the diabetic patients. Both oxidative and glycolytic enzyme activities were significantly increased in fast glycolytic and fast oxidative glycolytic fibers of type 2 diabetic patients. However, the fiber-specific ratio of glycolytic enzyme activity relative to oxidative activity was not different between type 2 diabetic patients and the control subjects. The myofibrillic ATP activity was significantly lower in all fiber types of patients with type 2 diabetes and correlates with glucose infusion rate during the steady state of a euglycemic-hyperinsulinemic clamp and maximal aerobic capacity and negatively with HbA1c values. CONCLUSIONS—Reduced oxidative enzyme activity in muscle of type 2 diabetic patients is most likely due to a reduction in slow oxidative fibers. Increased glycolytic and oxidative enzyme activities in individual muscle fibers are closely related to measures of long-term glycemic control and whole-body insulin sensitivity and could therefore represent a compensatory mechanism of the muscle in function of the altered glucose metabolism.