DD
Diana Dehaini
Author with expertise in Nanotechnology and Imaging for Cancer Therapy and Diagnosis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
4,156
h-index:
18
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Nanoparticle biointerfacing by platelet membrane cloaking

Che‐Ming Hu et al.Sep 16, 2015
The authors report a new biomimetic nanodelivery platform in which polymeric nanoparticles enclosed in the plasma membrane of human platelets are used for disease-relevant targeting, and the therapeutic potential of the concept is demonstrated in animal models of coronary restenosis and systemic bacterial infection. The properties of blood platelets — small discoid cells that carry out a broad range of functions related to haemostasis — marks them out as prime candidates to form the basis of drug delivery systems. These authors report a new nanoparticle-based delivery platform, in which polymeric nanoparticles are enclosed in the plasma membrane of human platelets. They demonstrate the use of these platelet-membrane cloaked nanoparticles for antibiotic delivery in murine models for cardiovascular disease and systemic bacterial infection. Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems1,2,3. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates4,5,6,7. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.
0

Erythrocyte–Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization

Diana Dehaini et al.Feb 15, 2017
Cell‐membrane‐coated nanoparticles have recently been studied extensively for their biological compatibility, retention of cellular properties, and adaptability to a variety of therapeutic and imaging applications. This class of nanoparticles, which has been fabricated with a variety of cell membrane coatings, including those derived from red blood cells (RBCs), platelets, white blood cells, cancer cells, and bacteria, exhibit properties that are characteristic of the source cell. In this study, a new type of biological coating is created by fusing membrane material from two different cells, providing a facile method for further enhancing nanoparticle functionality. As a proof of concept, the development of dual‐membrane‐coated nanoparticles from the fused RBC membrane and platelet membrane is demonstrated. The resulting particles, termed RBC–platelet hybrid membrane‐coated nanoparticles ([RBC‐P]NPs), are thoroughly characterized, and it is shown that they carry properties of both source cells. Further, the [RBC‐P]NP platform exhibits long circulation and suitability for further in vivo exploration. The reported strategy opens the door for the creation of biocompatible, custom‐tailored biomimetic nanoparticles with varying hybrid functionalities, which may be used to overcome the limitations of current nanoparticle‐based therapeutic and imaging platforms.
0

Nanoparticulate Delivery of Cancer Cell Membrane Elicits Multiantigenic Antitumor Immunity

Ashley Kroll et al.Nov 2, 2017
Anticancer vaccines train the body's own immune system to recognize and eliminate malignant cells based on differential antigen expression. While conceptually attractive, clinical efficacy is lacking given several key challenges stemming from the similarities between cancerous and healthy tissue. Ideally, an effective vaccine formulation would deliver multiple tumor antigens in a fashion that potently stimulates endogenous immune responses against those antigens. Here, it is reported on the fabrication of a biomimetic, nanoparticulate anticancer vaccine that is capable of delivering autologously derived tumor antigen material together with a highly immunostimulatory adjuvant. The two major components, tumor antigens and adjuvant, are presented concurrently in a fashion that maximizes their ability to promote effective antigen presentation and activation of downstream immune processes. Ultimately, it is demonstrated that the formulation can elicit potent antitumor immune responses in vivo. When combined with additional immunotherapies such as checkpoint blockades, the nanovaccine demonstrates substantial therapeutic effect. Overall, the work represents the rational application of nanotechnology for immunoengineering and can provide a blueprint for the future development of personalized, autologous anticancer vaccines with broad applicability.
0
Citation435
0
Save
0

Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles

Brian Luk et al.Dec 20, 2013
The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane–particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices.
0
Paper
Citation317
0
Save
0

Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis

Xiaoli Wei et al.Dec 7, 2017
Cardiovascular disease represents one of the major causes of death across the global population. Atherosclerosis, one of its most common drivers, is characterized by the gradual buildup of arterial plaque over time, which can ultimately lead to life-threatening conditions. Given the impact of the disease on public health, there is a great need for effective and noninvasive imaging modalities that can provide valuable information on its biological underpinnings during development. Here, we leverage the role of platelets in atherogenesis to design nanocarriers capable of targeting multiple biological elements relevant to plaque development. Biomimetic nanoparticles are prepared by coating platelet membrane around a synthetic nanoparticulate core, the product of which is capable of interacting with activated endothelium, foam cells, and collagen. The effects are shown to be exclusive to platelet membrane-coated nanoparticles. These biomimetic nanocarriers are not only capable of efficiently localizing to well-developed atherosclerotic plaque, but can also target subclinical regions of arteries susceptible to plaque formation. Using a commonly employed magnetic resonance imaging contrast agent, live detection is demonstrated using an animal model of atherosclerosis. Ultimately, this strategy may be leveraged to better assess the development of atherosclerosis, offering additional information to help clinicians better manage the disease.
0

Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors

Brian Luk et al.Jan 1, 2016
The therapeutic potential of nanoparticle-based drug carriers depends largely on their ability to evade the host immune system while delivering their cargo safely to the site of action. Of particular interest are simple strategies for the functionalization of nanoparticle surfaces that are both inherently safe and can also bestow immunoevasive properties, allowing for extended blood circulation times. Here, we evaluated a recently reported cell membrane-coated nanoparticle platform as a drug delivery vehicle for the treatment of a murine model of lymphoma. These biomimetic nanoparticles, consisting of a biodegradable polymeric material cloaked with natural red blood cell membrane, were shown to efficiently deliver a model chemotherapeutic, doxorubicin, to solid tumor sites for significantly increased tumor growth inhibition compared with conventional free drug treatment. Importantly, the nanoparticles also showed excellent immunocompatibility as well as an advantageous safety profile compared with the free drug, making them attractive for potential translation. This study demonstrates the promise of using a biomembrane-coating approach as the basis for the design of functional, safe, and immunocompatible nanocarriers for cancer drug delivery.