DA
Daniel Arlow
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
5,691
h-index:
17
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex

J. Cunningham et al.Nov 29, 2007
+3
D
J
J
0
Citation1,330
0
Save
0

Structure and dynamics of the M3 muscarinic acetylcholine receptor

Andrew Kruse et al.Feb 1, 2012
+11
A
J
A
The X-ray crystal structure of the M3 muscarinic acetylcholine receptor bound to the bronchodilator drug tiotropium is reported; comparison of this structure with that of the M2 muscarinic acetylcholine receptor reveals key differences that could potentially be exploited to develop subtype-selective drugs. The muscarinic acetylcholine receptors (mAChRs) constitute a family of G-protein-coupled receptors. These membrane proteins are targets for treatment of a broad range of conditions, including Alzheimer's disease, schizophrenia and chronic obstructive pulmonary disease. The five mAChR subtypes (M1–M5) share a high degree of sequence homology, but show marked differences in G-protein-coupling preference and physiological function. This pair of papers from Brian Kobilka's group presents the structures of two of the five subtypes. Haga et al. report the X-ray crystal structure of the M2 receptor, which is essential for the physiological control of cardiovascular function; Kruse et al. determine the structure of the M3 receptor, active in the bronchial airways and elsewhere. Comparison of the two structures reveals key differences that could potentially be exploited to develop subtype-selective drugs. Acetylcholine, the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1–M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate2,3,4. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences5,6. We describe here the structure of the Gq/11-coupled M3 mAChR (‘M3 receptor’, from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor7, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
0

Structure and function of an irreversible agonist-β2 adrenoceptor complex

Daniel Rosenbaum et al.Jan 1, 2011
+15
J
C
D
Two papers by Brian Kobilka and colleagues describe the X-ray crystal structure of the human β2 adrenergic receptor (β2AR) bound to various agonists. β2AR is a member of the G protein coupled receptor (GPCR) family of membrane-spanning receptors that sense molecules outside the cell and activate internal signalling pathways. With a ubiquitous role in human physiology, GPCRs are prime targets for drug discovery. A third paper by Christopher Tate and his team describes crystal structures of a similar GPCR, the turkey β1-adrenergic receptor (β1AR), bound to full and partial agonists. Together, these new structures reveal the subtle structural changes that accompany agonist binding, showing how binding events inside and outside the cell membrane stabilize the receptor's active state. Agonist binding to β1AR is shown to induce a contraction of the catecholamine-binding pocket relative to the antagonist-bound receptor, and molecular-dynamics simulations of the β2AR agonist complex suggest that the agonist-bound active state spontaneously relaxes to an inactive-like state in the absence of a G protein. The X-ray crystal structure of the human β2 adrenergic receptor, a G-protein-coupled receptor (GPCR), covalently bound to a small-molecule agonist is solved. Comparison of this structure with structures of this GPCR in an inactive state and in an antibody-stabilized active state reveals how binding events at both the extracellular and intracellular surfaces stabilize the active conformation of the receptor. Molecular dynamics simulations suggest that the agonist-bound active state spontaneously relaxes to an inactive-like state in the absence of a G protein. G-protein-coupled receptors (GPCRs) are eukaryotic integral membrane proteins that modulate biological function by initiating cellular signalling in response to chemically diverse agonists. Despite recent progress in the structural biology of GPCRs1, the molecular basis for agonist binding and allosteric modulation of these proteins is poorly understood. Structural knowledge of agonist-bound states is essential for deciphering the mechanism of receptor activation, and for structure-guided design and optimization of ligands. However, the crystallization of agonist-bound GPCRs has been hampered by modest affinities and rapid off-rates of available agonists. Using the inactive structure of the human β2 adrenergic receptor (β2AR) as a guide, we designed a β2AR agonist that can be covalently tethered to a specific site on the receptor through a disulphide bond. The covalent β2AR-agonist complex forms efficiently, and is capable of activating a heterotrimeric G protein. We crystallized a covalent agonist-bound β2AR–T4L fusion protein in lipid bilayers through the use of the lipidic mesophase method2, and determined its structure at 3.5 Å resolution. A comparison to the inactive structure and an antibody-stabilized active structure (companion paper3) shows how binding events at both the extracellular and intracellular surfaces are required to stabilize an active conformation of the receptor. The structures are in agreement with long-timescale (up to 30 μs) molecular dynamics simulations showing that an agonist-bound active conformation spontaneously relaxes to an inactive-like conformation in the absence of a G protein or stabilizing antibody.
0

The Dynamic Process of β2-Adrenergic Receptor Activation

Rie Nygaard et al.Jan 1, 2013
+13
R
Y
R
SummaryG-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β2-adrenergic receptor (β2AR), a prototypical GPCR. We labeled β2AR with 13CH3ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for β2AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for β2AR's ability to engage multiple signaling and regulatory proteins.Graphical abstractGraphical AbstractHighlights► NMR using 13CH3-ε-Met reveals dynamics of β2 adrenergic receptor (β2AR) ► NMR and computational approaches show unanticipated conformational states ► Conformational heterogeneity is observed in both unliganded and antagonist-bound β2AR ► Agonist alone does not fully stabilize the active conformation of the β2AR
0
Citation738
0
Save
0

Pathway and mechanism of drug binding to G-protein-coupled receptors

Ron Dror et al.Jul 21, 2011
+5
D
A
R
How drugs bind to their receptors--from initial association, through drug entry into the binding pocket, to adoption of the final bound conformation, or "pose"--has remained unknown, even for G-protein-coupled receptor modulators, which constitute one-third of all marketed drugs. We captured this pharmaceutically critical process in atomic detail using the first unbiased molecular dynamics simulations in which drug molecules spontaneously associate with G-protein-coupled receptors to achieve final poses matching those determined crystallographically. We found that several beta blockers and a beta agonist all traverse the same well-defined, dominant pathway as they bind to the β(1)- and β(2)-adrenergic receptors, initially making contact with a vestibule on each receptor's extracellular surface. Surprisingly, association with this vestibule, at a distance of 15 Å from the binding pocket, often presents the largest energetic barrier to binding, despite the fact that subsequent entry into the binding pocket requires the receptor to deform and the drug to squeeze through a narrow passage. The early barrier appears to reflect the substantial dehydration that takes place as the drug associates with the vestibule. Our atomic-level description of the binding process suggests opportunities for allosteric modulation and provides a structural foundation for future optimization of drug-receptor binding and unbinding rates.
0

Activation mechanism of the β 2 -adrenergic receptor

Ron Dror et al.Oct 26, 2011
+5
P
D
R
A third of marketed drugs act by binding to a G-protein-coupled receptor (GPCR) and either triggering or preventing receptor activation. Although recent crystal structures have provided snapshots of both active and inactive functional states of GPCRs, these structures do not reveal the mechanism by which GPCRs transition between these states. Here we propose an activation mechanism for the β 2 -adrenergic receptor, a prototypical GPCR, based on atomic-level simulations in which an agonist-bound receptor transitions spontaneously from the active to the inactive crystallographically observed conformation. A loosely coupled allosteric network, comprising three regions that can each switch individually between multiple distinct conformations, links small perturbations at the extracellular drug-binding site to large conformational changes at the intracellular G-protein-binding site. Our simulations also exhibit an intermediate that may represent a receptor conformation to which a G protein binds during activation, and suggest that the first structural changes during receptor activation often take place on the intracellular side of the receptor, far from the drug-binding site. By capturing this fundamental signaling process in atomic detail, our results may provide a foundation for the design of drugs that control receptor signaling more precisely by stabilizing specific receptor conformations.
0

High-resolution crystal structure of human protease-activated receptor 1

Cheng Zhang et al.Dec 1, 2012
+10
D
Y
C
Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2-Å-resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family. The X-ray crystal structure of the human G-protein-coupled receptor protease-activated receptor 1 (PAR1) bound to the antagonist vorapaxar is solved, revealing an unusual method of drug binding that should facilitate the development of improved PAR1-selective antagonists. The X-ray crystal structure of the human protease-activated receptor 1 (PAR1) bound to vorapaxar, a PAR1 antagonist, has been determined at 2.2 Å resolution. PAR1, also known as the thrombin receptor, is a G protein-coupled receptor that mediates cellular responses to the coagulation protease thrombin and related proteases. Vorapaxar was recently shown to prevent myocardial infarction in at-risk patients, and knowledge of the PAR structure will be relevant to the design of PAR1 antagonists with better drug properties.
0

Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

Ron Dror et al.Oct 11, 2013
+11
C
H
R
0
Citation402
0
Save