AN
Alberto Nicolis
Author with expertise in Cosmological Parameters and Dark Energy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
5,866
h-index:
45
/
i10-index:
66
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Galileon as a local modification of gravity

Alberto Nicolis et al.Mar 31, 2009
In the Dvali-Gabadadze-Porrati (DGP) model, the ``self-accelerating'' solution is plagued by a ghost instability, which makes the solution untenable. This fact, as well as all interesting departures from general relativity (GR), are fully captured by a four-dimensional effective Lagrangian, valid at distances smaller than the present Hubble scale. The 4D effective theory involves a relativistic scalar $\ensuremath{\pi}$, universally coupled to matter and with peculiar derivative self-interactions. In this paper, we study the connection between self-acceleration and the presence of ghosts for a quite generic class of theories that modify gravity in the infrared. These theories are defined as those that at distances shorter than cosmological, reduce to a certain generalization of the DGP 4D effective theory. We argue that for infrared modifications of GR locally due to a universally coupled scalar, our generalization is the only one that allows for a robust implementation of the Vainshtein effect---the decoupling of the scalar from matter in gravitationally bound systems---necessary to recover agreement with solar-system tests. Our generalization involves an internal Galilean invariance, under which $\ensuremath{\pi}$'s gradient shifts by a constant. This symmetry constrains the structure of the $\ensuremath{\pi}$ Lagrangian so much so that in 4D there exist only five terms that can yield sizable nonlinearities without introducing ghosts. We show that for such theories in fact there are ``self-accelerating'' de Sitter solutions with no ghostlike instabilities. In the presence of compact sources, these solutions can support spherically symmetric, Vainshtein-like nonlinear perturbations that are also stable against small fluctuations. We investigate a possible infrared completion of these theories at scales of order of the Hubble horizon, and larger. There are however some features of our theories that may constitute a problem at the theoretical or phenomenological level: the presence of superluminal excitations; the extreme subluminality of other excitations, which makes the quasistatic approximation for certain solar-system observables unreliable due to Cherenkov emission; the very low strong-interaction scale for $\ensuremath{\pi}\ensuremath{\pi}$ scatterings.
0

The string landscape, black holes and gravity as the weakest force

Nima Arkani–Hamed et al.Jun 15, 2007
We conjecture a general upper bound on the strength of gravity relative to gauge forces in quantum gravity. This implies, in particular, that in a four-dimensional theory with gravity and a U(1) gauge field with gauge coupling g, there is a new ultraviolet scale Λ = gMPl, invisible to the low-energy effective field theorist, which sets a cutoff on the validity of the effective theory. Moreover, there is some light charged particle with mass smaller than or equal to Λ. The bound is motivated by arguments involving holography and absence of remnants, the (in) stability of black holes as well as the non-existence of global symmetries in string theory. A sharp form of the conjecture is that there are always light ``elementary'' electric and magnetic objects with a mass/charge ratio smaller than the corresponding ratio for macroscopic extremal black holes, allowing extremal black holes to decay. This conjecture is supported by a number of non-trivial examples in string theory. It implies the necessary presence of new physics beneath the Planck scale, not far from the GUT scale, and explains why some apparently natural models of inflation resist an embedding in string theory.
0

Causality, analyticity and an IR obstruction to UV completion

Allan Adams et al.Oct 4, 2006
We argue that certain apparently consistent low-energy effective field theories described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity constraints. The obstruction involves the signs of a set of leading irrelevant operators, which must be strictly positive to ensure UV analyticity. An IR manifestation of this restriction is that the ``wrong'' signs lead to superluminal fluctuations around non-trivial backgrounds, making it impossible to define local, causal evolution, and implying a surprising IR breakdown of the effective theory. Such effective theories can not arise in quantum field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyticity properties. This conclusion applies to the DGP brane-world model modifying gravity in the IR, giving a simple explanation for the difficulty of embedding this model into controlled stringy backgrounds, and to models of electroweak symmetry breaking that predict negative anomalous quartic couplings for the W and Z. Conversely, any experimental support for the DGP model, or measured negative signs for anomalous quartic gauge boson couplings at future accelerators, would constitute direct evidence for the existence of superluminality and macroscopic non-locality unlike anything previously seen in physics, and almost incidentally falsify both local quantum field theory and perturbative string theory.
0
Citation904
0
Save
0

Starting the Universe: stable violation of the null energy condition and non-standard cosmologies

Paolo Creminelli et al.Dec 29, 2006
We present a consistent effective theory that violates the null energy condition (NEC) without developing any instabilities or other pathological features. The model is the ghost condensate with the global shift symmetry softly broken by a potential. We show that this system can drive a cosmological expansion with > 0. Demanding the absence of instabilities in this model requires ≲ H2. We then construct a general low-energy effective theory that describes scalar fluctuations about an arbitrary FRW background, and argue that the qualitative features found in our model are very general for stable systems that violate the NEC. Violating the NEC allows dramatically non-standard cosmological histories. To illustrate this, we construct an explicit model in which the expansion of our universe originates from an asymptotically flat state in the past, smoothing out the big-bang singularity within control of a low-energy effective theory. This gives an interesting alternative to standard inflation for solving the horizon problem. We also construct models in which the present acceleration has w<−1; a periodic ever-expanding universe; and a model with a smooth ``bounce'' connecting a contracting and expanding phase.
0

Cosmological non-linearities as an effective fluid

Daniel Baumann et al.Jul 30, 2012
The universe is smooth on large scales but very inhomogeneous on small scales. Why is the spacetime on large scales modeled to a good approximation by the Friedmann equations? Are we sure that small-scale non-linearities do not induce a large backreaction? Related to this, what is the effective theory that describes the universe on large scales? In this paper we make progress in addressing these questions. We show that the effective theory for the long-wavelength universe behaves as a viscous fluid coupled to gravity: integrating out short-wavelength perturbations renormalizes the homogeneous background and introduces dissipative dynamics into the evolution of long-wavelength perturbations. The effective fluid has small perturbations and is characterized by a few parameters like an equation of state, a sound speed and a viscosity parameter. These parameters can be matched to numerical simulations or fitted from observations. We find that the backreaction of small-scale non-linearities is very small, being suppressed by the large hierarchy between the scale of non-linearities and the horizon scale. The effective pressure of the fluid is always positive and much too small to significantly affect the background evolution. Moreover, we prove that virialized scales decouple completely from the large-scale dynamics, at all orders in the post-Newtonian expansion. We propose that our effective theory be used to formulate a well-defined and controlled alternative to conventional perturbation theory, and we discuss possible observational applications. Finally, our way of reformulating results in second-order perturbation theory in terms of a long-wavelength effective fluid provides the opportunity to understand non-linear effects in a simple and physically intuitive way.