JD
J. Dorelli
Author with expertise in Solar Physics and Space Weather
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,962
h-index:
45
/
i10-index:
112
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath

T. Phan et al.Apr 27, 2018
Magnetic reconnection in current sheets is a magnetic-to-particle energy conversion process that is fundamental to many space and laboratory plasma systems. In the standard model of reconnection, this process occurs in a minuscule electron-scale diffusion region1,2. On larger scales, ions couple to the newly reconnected magnetic-field lines and are ejected away from the diffusion region in the form of bi-directional ion jets at the ion Alfvén speed3-5. Much of the energy conversion occurs in spatially extended ion exhausts downstream of the diffusion region 6 . In turbulent plasmas, which contain a large number of small-scale current sheets, reconnection has long been suggested to have a major role in the dissipation of turbulent energy at kinetic scales7-11. However, evidence for reconnection plasma jetting in small-scale turbulent plasmas has so far been lacking. Here we report observations made in Earth's turbulent magnetosheath region (downstream of the bow shock) of an electron-scale current sheet in which diverging bi-directional super-ion-Alfvénic electron jets, parallel electric fields and enhanced magnetic-to-particle energy conversion were detected. Contrary to the standard model of reconnection, the thin reconnecting current sheet was not embedded in a wider ion-scale current layer and no ion jets were detected. Observations of this and other similar, but unidirectional, electron jet events without signatures of ion reconnection reveal a form of reconnection that can drive turbulent energy transfer and dissipation in electron-scale current sheets without ion coupling.
0

Generalized Time‐Series Analysis for In Situ Spacecraft Observations: Anomaly Detection and Data Prioritization Using Principal Components Analysis and Unsupervised Clustering

Matthew Finley et al.Sep 1, 2024
Abstract In situ spacecraft observations are critical to our study and understanding of the various phenomena that couple mass, momentum, and energy throughout near‐Earth space and beyond. However, on‐orbit telemetry constraints can severely limit the capability of spacecraft to transmit high‐cadence data, and missions are often only able to telemeter a small percentage of their captured data at full rate. This presents a programmatic need to prioritize intervals with the highest probability of enabling the mission's science goals. Larger missions such as the Magnetospheric Multiscale mission (MMS) aim to solve this problem with a Scientist‐In‐The‐Loop (SITL), where a domain expert flags intervals of time with potentially interesting data for high‐cadence data downlink and subsequent study. Although suitable for some missions, the SITL solution is not always feasible, especially for low‐cost missions such as CubeSats and NanoSats. This manuscript presents a generalizable method for the detection of anomalous data points in spacecraft observations, enabling rapid data prioritization without substantial computational overhead or the need for additional infrastructure on the ground. Specifically, Principal Components Analysis and One‐Class Support Vector Machines are used to generate an alternative representation of the data and provide an indication, for each point, of the data's potential for scientific utility. The technique's performance and generalizability is demonstrated through application to intervals of observations, including magnetic field data and plasma moments, from the CASSIOPE e‐POP/Swarm‐Echo and MMS missions.