JP
J. Perea
Author with expertise in Astronomical Instrumentation and Spectroscopy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2,385
h-index:
33
/
i10-index:
85
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to [ITAL]z[/ITAL] ∼ 1

S. Lilly et al.Mar 20, 1996
The comoving luminosity density of the universe, (λ), is estimated from the Canada-France Redshift Survey (CFRS) faint galaxy sample in three wave bands (2800 Å, 4400 Å, and 1 μm) over the redshift range 0 < z < 1. In all three wave bands, increases markedly with redshift. For a (q0 = 0.5, Ω = 1.0) cosmological model, the comoving luminosity density increases as (1 + z)2.1 ± 0.5 at 1 μm, as (1 + z)2.7 ± 0.5 at 4400 Å, and as (1 + z)3.9 ± 0.75 at 2800 Å, these exponents being reduced by 0.43 and 1.12 for (0.05, 0.1) and (-0.85, 0.1) cosmological models, respectively. The (λ)-τ relation can be reasonably well modeled by an actively evolving stellar population with a Salpeter initial mass function (IMF) extending to 125 M☉, and a star formation rate declining as τ-2.5 with a turn-on of star formation at early epochs. A Scalo IMF extending to the same mass limit produces too many long-lived low-mass stars. This rapid evolution of the star formation rate and comoving luminosity density of the universe is in good agreement with the conclusions of Pei & Fall from their analysis of the evolving metallicity of the universe. One consequence of this evolution is that the physical luminosity density at short wavelengths has probably declined by 2 orders of magnitude since z ~ 1.
0

COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2

O. Ilbert et al.Dec 8, 2008
We present accurate photometric redshifts (photo-z) in the 2-deg2 COSMOS field. The redshifts are computed with 30 broad, intermediate, and narrowbands covering the UV (Galaxy Evolution Explorer), visible near-IR (NIR; Subaru, Canada–France–Hawaii Telescope (CFHT), United Kingdom Infrared Telescope, and National Optical Astronomy Observatory), and mid-IR (Spitzer/IRAC). A χ2 template-fitting method (Le Phare) was used and calibrated with large spectroscopic samples from the Very Large Telescope Visible Multi-Object Spectrograph and the Keck Deep Extragalactic Imaging Multi-Object Spectrograph. We develop and implement a new method which accounts for the contributions from emission lines ([O ii], Hβ, Hα, and Lyα) to the spectral energy distributions (SEDs). The treatment of emission lines improves the photo-z accuracy by a factor of 2.5. Comparison of the derived photo-z with 4148 spectroscopic redshifts (i.e., Δz = zs − zp) indicates a dispersion of at i+AB < 22.5, a factor of 2–6 times more accurate than earlier photo-z in the COSMOS, CFHT Legacy Survey, and the Classifying Object by Medium-Band Observations-17 survey fields. At fainter magnitudes i+AB < 24 and z < 1.25, the accuracy is . The deep NIR and Infrared Array Camera coverage enables the photo-z to be extended to z ∼ 2, albeit with a lower accuracy ( at i+AB ∼ 24). The redshift distribution of large magnitude-selected samples is derived and the median redshift is found to range from zm = 0.66 at 22 < i+AB < 22.5 to zm = 1.06 at 24.5 < i+AB < 25. At i+AB < 26.0, the multiwavelength COSMOS catalog includes approximately 607,617 objects. The COSMOS-30 photo-z enables the full exploitation of this survey for studies of galaxy and large-scale structure evolution at high redshift.