ET
Eline Tolstoy
Author with expertise in Stellar Astrophysics and Exoplanet Studies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,632
h-index:
63
/
i10-index:
136
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios

Matthew Shetrone et al.Feb 1, 2003
We have used the Ultraviolet Echelle Spectrograph (UVES) on Kueyen (UT2) of the Very Large Telescope to take spectra of 15 individual red giants in the Sculptor, Fornax, Carina, and Leo I dwarf spheroidal galaxies (dSph's). We measure the abundances of α-, iron peak, first s-process, second s-process, and r-process elements. No dSph giants in our sample show the deep mixing abundance pattern (O and sometimes Mg depleted, while Na and Al are enhanced) seen in nearly all globular clusters. At a given metallicity the dSph giants exhibit lower [el/Fe] abundance ratios for the α-elements than stars in the Galactic halo. The low α abundances at low metallicities can be caused by a slow star formation rate and contribution from Type Ia SNe, and/or a small star formation event (low total mass) and mass-dependent Type II SN yields. In addition, Leo I and Sculptor exhibit a declining even-Z [el/Fe] pattern with increasing metallicity, while Fornax exhibits no significant slope. In contrast, Carina shows a large spread in the even-Z abundance pattern, even over small metallicity ranges, as might be expected from a bursting star formation history. The metal-poor stars in these dSph galaxies ([Fe/H] < -1) have halo-like s- and r-process abundances, but not every dSph exhibits the same evolution in the s- and r-process abundance pattern. Carina, Sculptor, and Fornax show a rise in the s-/r-process ratio with increasing metallicity, evolving from a pure r-process ratio to a solar-like s- and r-process ratio. On the other hand, Leo I, appears to show an r-process–dominated ratio over the range in metallicities sampled. At present, we attribute these differences in the star formation histories of these galaxies. Comparison of the dSph abundances with those of the halo reveals some consistencies with the Galactic halo. In particular, Nissen & Shuster found that their metal-rich, high Rmax high zmax halo stars exhibited low [α/Fe], [Na/Fe] and [Ni/Fe] abundance ratios. In the same abundance range our dSph exhibit the same abundance pattern, supporting their suggestions that disrupted dSph's may explain up to 50% of the metal-rich halo. Unfortunately, similar comparisons with the metal-poor Galactic halo have not revealed similar consistencies, suggesting that the majority of the metal-poor Galactic halo could not have been formed from objects similar to the dSph studied here. We use the dSph abundances to place new constraints on the nucleosynthetic origins of several elements. We attribute differences in the evolution of [Y/Fe] in the dSph stars versus the halo stars to a very weak AGB or SN Ia yield of Y (especially compared with Ba). That a lower and flatter Ba/Y ratio is seen in the halo is most likely a result of the pattern being erased by the large metallicity dispersion in the halo. Also, we find [Cu/Fe] and [Mn/Fe] are flat and halo-like over the metallicity city range -2 < [Fe/H] < -1.2, and that the [Cu/α] ratios are flat. Combining these abundances with knowledge of the age spread in these galaxies suggests that SNe Ia are not the main site for the production of Cu (and Mn) in very metal-poor stars. We suggest that metallicity-dependent SN yields may be more promising.
0

The Pristine survey – I. Mining the Galaxy for the most metal-poor stars

Else Starkenburg et al.May 4, 2017
We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H & K lines and conducted in the northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope (CFHT). This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterise the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1,000 deg2 in the Galactic halo ranging from b~30 to 78 and covers many known stellar substructures. We demonstrate that, for SDSS stellar objects, we can calibrate the photometry at the 0.02-magnitude level. The comparison with existing spectroscopic metallicities from SDSS/SEGUE and LAMOST shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of ~0.2 dex from [Fe/H]=-0.5 down to the extremely metal-poor regime ([Fe/H]<-3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H]SEGUE<-3.0 stars among [Fe/H]Pristine<-3.0 selected stars is 24% and 85% of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H]<-4.0, which can teach us valuable lessons about the early Universe.