SS
Stefania Sciara
Author with expertise in Quantum Information and Computation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
1,814
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

On-chip generation of high-dimensional entangled quantum states and their coherent control

Michael Kues et al.Jun 1, 2017
The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues et al. generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8,9,10,11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
0

High-dimensional one-way quantum processing implemented on d-level cluster states

Christian Reimer et al.Nov 19, 2018
Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithms8. Here, we experimentally realize, characterize and test the noise sensitivity of three-level, four-partite cluster states formed by two photons in the time9 and frequency10 domain, confirming genuine multi-partite entanglement with higher noise robustness compared to conventional two-level cluster states6,11–13. We perform proof-of-concept high-dimensional one-way quantum operations, where the cluster states are transformed into orthogonal, maximally entangled d-level two-partite states by means of projection measurements. Our scalable approach is based on integrated photonic chips9,10 and optical fibre communication components, thus achieving new and deterministic functionalities. The creation and manipulation of large quantum states is necessary for quantum information processing tasks. Three-level, four-partite cluster states have now been created in the time and frequency domain of two photons on-chip.
0

Practical system for the generation of pulsed quantum frequency combs

Piotr Roztocki et al.Jul 27, 2017
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation.Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources.Pulsed quantum frequency combs are of particular interest, since they allow the generation of singlefrequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications.However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies.Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation.We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR).Furthermore, by increasing the repetition rate of the excitation field via harmonic modelocking (i.e.driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e.source efficiency), while maintaining a high CAR and photon purity.Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
0

Quantum key distribution implemented with d-level time-bin entangled photons

Hao Yu et al.Jan 2, 2025
Abstract High-dimensional photon states (qudits) are pivotal to enhance the information capacity, noise robustness, and data rates of quantum communications. Time-bin entangled qudits are promising candidates for implementing high-dimensional quantum communications over optical fiber networks with processing rates approaching those of classical telecommunications. However, their use is hindered by phase instability, timing inaccuracy, and low scalability of interferometric schemes needed for time-bin processing. As well, increasing the number of time bins per photon state typically requires decreasing the repetition rate of the system, affecting in turn the effective qudit rates. Here, we demonstrate a fiber-pigtailed, integrated photonic platform enabling the generation and processing of picosecond-spaced time-bin entangled qudits in the telecommunication C band via an on-chip interferometry system. We experimentally demonstrate the Bennett-Brassard-Mermin 1992 quantum key distribution protocol with time-bin entangled qudits and extend it over a 60 km-long optical fiber link, by showing dimensionality scaling without sacrificing the repetition rate. Our approach enables the manipulation of time-bin entangled qudits at processing speeds typical of standard telecommunications (10 s of GHz) with high quantum information capacity per single frequency channel, representing an important step towards an efficient implementation of high-data rate quantum communications in standard, multi-user optical fiber networks.