RR
Richard Rueda
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
2,317
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Gamma frequency entrainment attenuates amyloid load and modifies microglia

Hannah Iaccarino et al.Dec 6, 2016
+13
A
A
H
Changes in gamma oscillations (20–50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer’s disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-β (Aβ)1–40 and Aβ 1–42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aβ. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aβ1–40 and Aβ1–42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer’s-disease-associated pathology. Mouse models of Alzheimer’s disease show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline; driving neurons to oscillate at gamma frequency (40 Hz) reduces levels of amyloid-β peptides. Disrupted gamma rhythms—oscillations in the brain's neuronal circuits at around 20–50 Hz—are hallmarks of various neurological disorders and have been seen in patients with Alzheimer's disease and specific mouse models of the disease. Li-Huei Tsai and colleagues show that gamma oscillations are also disrupted in the 5XFAD mouse model of Alzheimer's disease, and find reduced gamma prior to plaque formation and cognitive decline. Remarkably, by training neurons to oscillate at gamma frequency (40 Hz) in multiple mouse models including APP/PS1 and wild-type mice, amyloid-β peptide levels could be reduced.
0

APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types

Yuan-Ta Lin et al.Jun 1, 2018
+18
F
J
Y
The apolipoprotein E4 (APOE4) variant is the single greatest genetic risk factor for sporadic Alzheimer’s disease (sAD). However, the cell-type-specific functions of APOE4 in relation to AD pathology remain understudied. Here, we utilize CRISPR/Cas9 and induced pluripotent stem cells (iPSCs) to examine APOE4 effects on human brain cell types. Transcriptional profiling identified hundreds of differentially expressed genes in each cell type, with the most affected involving synaptic function (neurons), lipid metabolism (astrocytes), and immune response (microglia-like cells). APOE4 neurons exhibited increased synapse number and elevated Aβ42 secretion relative to isogenic APOE3 cells while APOE4 astrocytes displayed impaired Aβ uptake and cholesterol accumulation. Notably, APOE4 microglia-like cells exhibited altered morphologies, which correlated with reduced Aβ phagocytosis. Consistently, converting APOE4 to APOE3 in brain cell types from sAD iPSCs was sufficient to attenuate multiple AD-related pathologies. Our study establishes a reference for human cell-type-specific changes associated with the APOE4 variant.Video AbstracteyJraWQiOiI4ZjUxYWNhY2IzYjhiNjNlNzFlYmIzYWFmYTU5NmZmYyIsImFsZyI6IlJTMjU2In0.eyJzdWIiOiJhMjEwM2U1MTllMDU5ZTU5NzQzNzFiY2ZkYzY2YjFmOCIsImtpZCI6IjhmNTFhY2FjYjNiOGI2M2U3MWViYjNhYWZhNTk2ZmZjIiwiZXhwIjoxNjc3ODM3NDAyfQ.cm_8iE6yPyIUtMA9CHuHdkKCpDzSoengfWtrTwQuK91RUFDu5wgXxv6w0LkGp3xIp4Q5ONl1L-nEkyqiD8y5XsDnNu29a6FOVkKPbcXQ_rWezgdGcufenbm5VD4lQ1jJIc236lH69WCL0EIWXgL49CYD2U02kBteDYs3OdY1fThG2C3slE8IyHEB1o6NHHpsyMLHAmkJEPUA_fNRg-NiC_Jk2khN70bJRGkX4pcIpAoo3inlbuuEHi04BCX2aBnzpTJZyManAMJK6AdyelKmaFWjYH93z-Dp8wadAwqXUIZj2l9ykRD2ucitOOP0XLYH-FJ4t9yO_sESEIZQ6NGSaQ(mp4, (11.59 MB) Download video
0
Citation799
0
Save
0

Activity-Induced DNA Breaks Govern the Expression of Neuronal Early-Response Genes

Ram Madabhushi et al.Jun 1, 2015
+13
A
F
R
Neuronal activity causes the rapid expression of immediate early genes that are crucial for experience-driven changes to synapses, learning, and memory. Here, using both molecular and genome-wide next-generation sequencing methods, we report that neuronal activity stimulation triggers the formation of DNA double strand breaks (DSBs) in the promoters of a subset of early-response genes, including Fos, Npas4, and Egr1. Generation of targeted DNA DSBs within Fos and Npas4 promoters is sufficient to induce their expression even in the absence of an external stimulus. Activity-dependent DSB formation is likely mediated by the type II topoisomerase, Topoisomerase IIβ (Topo IIβ), and knockdown of Topo IIβ attenuates both DSB formation and early-response gene expression following neuronal stimulation. Our results suggest that DSB formation is a physiological event that rapidly resolves topological constraints to early-response gene expression in neurons.PaperClip/cms/asset/9a2d9a10-c889-411a-bb20-694118842680/mmc9.mp3Loading ...(mp3, 4.07 MB) Download audio
0
Citation598
0
Save