AC
Andrew Coutts
Author with expertise in Urban Heat Islands and Mitigation Strategies
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
2,486
h-index:
27
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes

Briony Norton et al.Nov 11, 2014
Warming associated with urban development will be exacerbated in future years by temperature increases due to climate change. The strategic implementation of urban green infrastructure (UGI) e.g. street trees, parks, green roofs and facades can help achieve temperature reductions in urban areas while delivering diverse additional benefits such as pollution reduction and biodiversity habitat. Although the greatest thermal benefits of UGI are achieved in climates with hot, dry summers, there is comparatively little information available for land managers to determine an appropriate strategy for UGI implementation under these climatic conditions. We present a framework for prioritisation and selection of UGI for cooling. The framework is supported by a review of the scientific literature examining the relationships between urban geometry, UGI and temperature mitigation which we used to develop guidelines for UGI implementation that maximises urban surface temperature cooling. We focus particularly on quantifying the cooling benefits of four types of UGI: green open spaces (primarily public parks), shade trees, green roofs, and vertical greening systems (green walls and facades) and demonstrate how the framework can be applied using a case study from Melbourne, Australia.
0
Paper
Citation912
0
Save
0

Watering our cities

Andrew Coutts et al.Nov 6, 2012
Urban drainage infrastructure is generally designed to rapidly export stormwater away from the urban environment to minimize flood risk created by extensive impervious surface cover. This deficit is resolved by importing high-quality potable water for irrigation. However, cities and towns at times face water restrictions in response to drought and water scarcity. This can exacerbate heating and drying, and promote the development of unfavourable urban climates. The combination of excessive heating driven by urban development, low water availability and future climate change impacts could compromise human health and amenity for urban dwellers. This paper draws on existing literature to demonstrate the potential of Water Sensitive Urban Design (WSUD) to help improve outdoor human thermal comfort in urban areas and support Climate Sensitive Urban Design (CSUD) objectives within the Australian context. WSUD provides a mechanism for retaining water in the urban landscape through stormwater harvesting and reuse while also reducing urban temperatures through enhanced evapotranspiration and surface cooling. Research suggests that WSUD features are broadly capable of lowering temperatures and improving human thermal comfort, and when integrated with vegetation (especially trees) have potential to meet CSUD objectives. However, the degree of benefit (the intensity of cooling and improvements to human thermal comfort) depends on a multitude of factors including local environmental conditions, the design and placement of the systems, and the nature of the surrounding urban landscape. We suggest that WSUD can provide a source of water across Australian urban environments for landscape irrigation and soil moisture replenishment to maximize the urban climatic benefits of existing vegetation and green spaces. WSUD should be implemented strategically into the urban landscape, targeting areas of high heat exposure, with many distributed WSUD features at regular intervals to promote infiltration and evapotranspiration, and maintain tree health.
0
Paper
Citation364
0
Save
0

Initial results from Phase 2 of the international urban energy balance model comparison

Sue Grimmond et al.Oct 7, 2010
Abstract Urban land surface schemes have been developed to model the distinct features of the urban surface and the associated energy exchange processes. These models have been developed for a range of purposes and make different assumptions related to the inclusion and representation of the relevant processes. Here, the first results of Phase 2 from an international comparison project to evaluate 32 urban land surface schemes are presented. This is the first large‐scale systematic evaluation of these models. In four stages, participants were given increasingly detailed information about an urban site for which urban fluxes were directly observed. At each stage, each group returned their models' calculated surface energy balance fluxes. Wide variations are evident in the performance of the models for individual fluxes. No individual model performs best for all fluxes. Providing additional information about the surface generally results in better performance. However, there is clear evidence that poor choice of parameter values can cause a large drop in performance for models that otherwise perform well. As many models do not perform well across all fluxes, there is need for caution in their application, and users should be aware of the implications for applications and decision making. Copyright © 2010 Royal Meteorological Society
0
Paper
Citation358
0
Save
0

Impact of Increasing Urban Density on Local Climate: Spatial and Temporal Variations in the Surface Energy Balance in Melbourne, Australia

Andrew Coutts et al.Apr 1, 2007
Abstract Variations in urban surface characteristics are known to alter the local climate through modification of land surface processes that influence the surface energy balance and boundary layer and lead to distinct urban climates. In Melbourne, Australia, urban densities are planned to increase under a new strategic urban plan. Using the eddy covariance technique, this study aimed to determine the impact of increasing housing density on the surface energy balance and to investigate the relationship to Melbourne’s local climate. Across four sites of increasing housing density and varying land surface characteristics (three urban and one rural), it was found that the partitioning of available energy was similar at all three urban sites. Bowen ratios were consistently greater than 1 throughout the year at the urban sites (often as high as 5) and were higher than the rural site (less than 1) because of reduced evapotranspiration. The greatest difference among sites was seen in urban heat storage, which was influenced by urban canopy complexity, albedo, and thermal admittance. Resulting daily surface temperatures were therefore different among the urban sites, yet differences in above-canopy daytime air temperatures were small because of similar energy partitioning and efficient mixing. However, greater nocturnal temperatures were observed with increasing density as a result of variations in heat storage release that are in part due to urban canyon morphology. Knowledge of the surface energy balance is imperative for urban planning schemes because there is a possibility for manipulation of land surface characteristics for improved urban climates.
0
Paper
Citation313
0
Save