The progression of the Internet of Things (IoT) has brought about a complete transformation in the way we interact with the physical world. However, this transformation has brought with it a slew of challenges. The advent of intelligent machines that can not only gather data for analysis and decision-making, but also learn and make independent decisions has been a breakthrough. However, the low-cost requirement of IoT devices requires the use of limited resources in processing and storage, which typically leads to a lack of security measures. Consequently, most IoT devices are susceptible to security breaches, turning them into "Bots" that are used in Distributed Denial of Service (DDoS) attacks. In this paper, we propose a new strategy labeled "Temporary Dynamic IP" (TDIP), which offers effective protection against DDoS attacks. The TDIP solution rotates Internet Protocol (IP) addresses frequently, creating a significant deterrent to potential attackers. By maintaining an "IP lease-time" that is short enough to prevent unauthorized access, TDIP enhances overall system security. Our testing, conducted via OMNET++, demonstrated that TDIP was highly effective in preventing DDoS attacks and, at the same time, improving network efficiency and IoT network protection.