SK
Susan Kralisch
Author with expertise in Inflammation and Obesity-Related Metabolic Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
1,823
h-index:
39
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Plasma Visfatin Concentrations and Fat Depot–Specific mRNA Expression in Humans

Janin Berndt et al.Oct 1, 2005
Visceral and subcutaneous adipose tissue display important metabolic differences that underlie the association of visceral obesity with obesity-related cardiovascular and metabolic alterations. Recently, visfatin was identified as an adipokine, which is predominantly secreted from visceral adipose tissue both in humans and mice. In this study, we examined whether visfatin plasma concentrations (using enzyme immunosorbent assay) and mRNA expression (using RT-PCR) in visceral and subcutaneous fat correlates with anthropometric and metabolic parameters in 189 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance. Visfatin plasma concentration correlates positively with the visceral visfatin mRNA expression (r2 = 0.17, P &lt; 0.0001), BMI (r2 = 0.062, P = 0.004), percent body fat (r2 = 0.048, P = 0.01), and negatively with subcutaneous visfatin mRNA expression (r2 = 0.18, P &lt; 0.0001). However, in a subgroup of 73 individuals, in which visceral fat mass was calculated from computed tomography scans, there was no correlation between plasma visfatin concentrations and visceral fat mass. We found no significant correlation between visfatin plasma concentrations and parameters of insulin sensitivity, including fasting insulin, fasting plasma glucose concentrations, and the glucose infusion rate during the steady state of an euglycemic-hyperinsulinemic clamp independent of percent body fat. Visfatin gene expression was not different between visceral and subcutaneous adipose tissue in the entire study group nor in selected subgroups. We found a significant correlation between visceral visfatin gene expression and BMI (r2 = 0.06, P = 0.001) and percent body fat (measured using dual-energy X-ray absorptiometry) (r2 = 0.044, P = 0.004), whereas no significant association between BMI or percent body fat and subcutaneous visfatin mRNA expression existed (both P &gt;0.5). In conclusion, visfatin plasma concentrations and visceral visfatin mRNA expression correlated with measures of obesity but not with visceral fat mass or waist-to-hip ratio. In addition, we did not find differences in visfatin mRNA expression between visceral and subcutaneous adipose tissue in humans.
0

Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes

Mathias Faßhauer et al.Feb 1, 2003
Recently, it has been shown that adiponectin is an important insulin-sensitizing fat-derived protein which is downregulated in insulin resistance and obesity, and replenishment of which improves insulin sensitivity. In contrast, interleukin (IL)-6 appears as an adipocytokine serum concentrations of which are elevated in these states. However, it has not been determined whether IL-6 might impact on expression and secretion of adiponectin. To clarify this, 3T3-L1 adipocytes were treated with different concentrations of IL-6 for various periods of time. Adiponectin mRNA was measured by quantitative real-time reverse transcription-polymerase chain reaction and secretion was determined by radioimmunoassays. Interestingly, treatment of 3T3-L1 cells with 30 ng/ml IL-6 significantly decreased adiponectin secretion to 75% of control levels. Adiponectin secretion was also inhibited between 25% and 45% by chronic treatment with forskolin (50 μM), tumor necrosis factor α (100 ng/ml), and dexamethasone (100 nM). Furthermore, adiponectin mRNA expression was downregulated by up to 50% in a time- and dose-dependent manner, with significant inhibition detectable at concentrations as low as 3 ng/ml IL-6 and as early as 8 h after effector addition. The inhibitory effect of IL-6 was partially reversed by pretreatment of 3T3-L1 cells with pharmacological inhibitors of a p44/42 mitogen-activated protein (MAP) kinase. Moreover, the negative effect of IL-6 on adiponectin mRNA expression could be reversed by withdrawal of the hormone for 24 h. Taken together, our results suggest that adiponectin gene expression is reversibly downregulated by IL-6 and support the concept of adiponectin being an important selectively controlled modulator of insulin sensitivity.