PF
Péter Friedrich
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1,057
h-index:
44
/
i10-index:
185
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The eROSITA X-ray telescope on SRG

P. Predehl et al.Oct 6, 2020
eROSITA (extended ROentgen Survey with an Imaging Telescope Array) is the primary instrument on the Spectrum-Roentgen-Gamma (SRG) mission, which was successfully launched on July 13, 2019, from the Baikonour cosmodrome. After the commissioning of the instrument and a subsequent calibration and performance verification phase, eROSITA started a survey of the entire sky on December 13, 2019. By the end of 2023, eight complete scans of the celestial sphere will have been performed, each lasting six months. At the end of this program, the eROSITA all-sky survey in the soft X-ray band (0.2–2.3 keV) will be about 25 times more sensitive than the ROSAT All-Sky Survey, while in the hard band (2.3–8 keV) it will provide the first ever true imaging survey of the sky. The eROSITA design driving science is the detection of large samples of galaxy clusters up to redshifts z > 1 in order to study the large-scale structure of the universe and test cosmological models including Dark Energy. In addition, eROSITA is expected to yield a sample of a few million AGNs, including obscured objects, revolutionizing our view of the evolution of supermassive black holes. The survey will also provide new insights into a wide range of astrophysical phenomena, including X-ray binaries, active stars, and diffuse emission within the Galaxy. Results from early observations, some of which are presented here, confirm that the performance of the instrument is able to fulfil its scientific promise. With this paper, we aim to give a concise description of the instrument, its performance as measured on ground, its operation in space, and also the first results from in-orbit measurements.
0

Preformed Structural Elements Feature in Partner Recognition by Intrinsically Unstructured Proteins

Mónika Fuxreiter et al.Apr 10, 2004
Intrinsically unstructured proteins (IUPs) are devoid of extensive structural order but often display signs of local and limited residual structure. To explain their effective functioning, we reasoned that such residual structure can be crucial in their interactions with their structured partner(s) in a way that preformed structural elements presage their final conformational state. To check this assumption, a database of 24 IUPs with known 3D structures in the bound state has been assembled and the distribution of secondary structure elements and backbone torsion angles have been analysed. The high proportion of residues in coil conformation and with φ, ψ angles in the disallowed regions of the Ramachandran map compared to the reference set of globular proteins shows that IUPs are not fully ordered even in their bound form. To probe the effect of partner proteins on IUP folding, inherent conformational preferences of IUP sequences have been assessed by secondary structure predictions using the GOR, ALB and PROF algorithms. The accuracy of predicting secondary structure elements of IUPs is similar to that of their partner proteins and is significantly higher than the corresponding values for random sequences. We propose that strong conformational preferences mark regions in IUPs (mostly helices), which correspond to their final structural state, while regions with weak conformational preferences represent flexible linkers between them. In our interpretation, preformed elements could serve as initial contact points, the binding of which facilitates the reeling of the flexible regions onto the template. This finding implies that IUPs draw a functional advantage from preformed structural elements, as they enable their facile, kinetically and energetically less demanding, interaction with their physiological partner.