SS
S. Snedden
Author with expertise in Gamma-Ray Bursts and Supernovae Connections
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
3,592
h-index:
22
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Sloan Digital Sky Survey quasar catalog: ninth data release

Isabelle Pâris et al.Oct 12, 2012
We present the Data Release 9 Quasar (DR9Q) catalog from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. The catalog includes all BOSS objects that were targeted as quasar candidates during the survey, are spectrocopically confirmed as quasars via visual inspection, have luminosities Mi[z=2]<-20.5 (in a $\Lambda$CDM cosmology with H0 = 70 km/s/Mpc, $\Omega_{\rm M}$ = 0.3, and $\Omega_{\Lambda}$ = 0.7) and either display at least one emission line with full width at half maximum (FWHM) larger than 500 km/s or, if not, have interesting/complex absorption features. It includes as well, known quasars (mostly from SDSS-I and II) that were reobserved by BOSS. This catalog contains 87,822 quasars (78,086 are new discoveries) detected over 3,275 deg$^{2}$ with robust identification and redshift measured by a combination of principal component eigenspectra newly derived from a training set of 8,632 spectra from SDSS-DR7. The number of quasars with $z>2.15$ (61,931) is ~2.8 times larger than the number of z>2.15 quasars previously known. Redshifts and FWHMs are provided for the strongest emission lines (CIV, CIII], MgII). The catalog identifies 7,533 broad absorption line quasars and gives their characteristics. For each object the catalog presents five-band (u,g,r,i,z) CCD-based photometry with typical accuracy of 0.03 mag, and information on the morphology and selection method. The catalog also contains X-ray, ultraviolet, near-infrared, and radio emission properties of the quasars, when available, from other large-area surveys.
0

Stellar velocity dispersions and emission line properties of SDSS-III/BOSS galaxies

Daniel Thomas et al.Mar 12, 2013
We perform a spectroscopic analysis of 492 450 galaxy spectra from the first two years of observations of the Sloan Digital Sky Survey (SDSS) III/Baryonic Oscillation Spectroscopic Survey (BOSS) collaboration. This data set has been released in the ninth SDSS data release, the first public data release of BOSS spectra. We show that the typical signal-to-noise ratio of BOSS spectra, despite being low, is sufficient to measure stellar velocity dispersion and emission line fluxes for individual objects. We show that the typical velocity dispersion of a BOSS galaxy is ∼240 km s−1. The typical error in the velocity dispersion measurement is 14 per cent, and 93 per cent of BOSS galaxies have velocity dispersions with an accuracy of better than 30 per cent. The distribution in velocity dispersion is redshift independent between redshifts 0.15 and 0.7, which reflects the survey design targeting massive galaxies with an approximately uniform mass distribution in this redshift interval. We show that emission lines can be measured on BOSS spectra. However, the majority of BOSS galaxies lack detectable emission lines, as is to be expected because of the target selection design towards massive galaxies. We analyse the emission line properties and present diagnostic diagrams using the emission lines [O ii], Hβ, [O iii], Hα and [N ii] (detected in about 4 per cent of the galaxies) to separate star-forming objects and active galactic nuclei (AGN). We show that the emission line properties are strongly redshift dependent and that there is a clear correlation between observed frame colours and emission line properties. Within in the low-z sample (LOWZ) around 0.15 < z < 0.3, half of the emission line galaxies have low-ionization nuclear emission-line region (LINER)-like emission line ratios, followed by Seyfert-AGN-dominated spectra, and only a small fraction of a few per cent are purely star-forming galaxies. AGN and LINER-like objects, instead, are less prevalent in the high-z sample (CMASS) around 0.4 < z < 0.7, where more than half of the emission line objects are star forming. This is a pure selection effect caused by the non-detection of weak Hβ emission lines in the BOSS spectra. Finally, we show that star-forming, AGN and emission line free galaxies are well separated in the g − r versus r − i target selection diagram.