RS
Robert Scott
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
2,117
h-index:
0
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci

Kyle Gaulton et al.Nov 9, 2015
Kyle Gaulton, Mark McCarthy, Andrew Morris and colleagues report fine mapping and genomic annotation of 39 established type 2 diabetes susceptibility loci. They find that the set of potential causal variants is enriched for overlap with FOXA2 binding sites in human islet and liver cells, and they show that a likely causal variant near MTNR1B increases FOXA2-bound enhancer activity, providing a molecular mechanism to explain the effect of this locus on disease risk. We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
0
Citation390
0
Save
0

Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome

Felix Day et al.Sep 29, 2015
Abstract Polycystic ovary syndrome (PCOS) is the most common reproductive disorder in women, yet there is little consensus regarding its aetiology. Here we perform a genome-wide association study of PCOS in up to 5,184 self-reported cases of White European ancestry and 82,759 controls, with follow-up in a further ∼2,000 clinically validated cases and ∼100,000 controls. We identify six signals for PCOS at genome-wide statistical significance ( P <5 × 10 −8 ), in/near genes ERBB4/HER4 , YAP1 , THADA , FSHB , RAD50 and KRR1. Variants in/near three of the four epidermal growth factor receptor genes ( ERBB2/HER2 , ERBB3/HER3 and ERBB4/HER4) are associated with PCOS at or near genome-wide significance. Mendelian randomization analyses indicate causal roles in PCOS aetiology for higher BMI ( P =2.5 × 10 −9 ), higher insulin resistance ( P =6 × 10 −4 ) and lower serum sex hormone binding globulin concentrations ( P =5 × 10 −4 ). Furthermore, genetic susceptibility to later menopause is associated with higher PCOS risk ( P =1.6 × 10 −8 ) and PCOS-susceptibility alleles are associated with higher serum anti-Müllerian hormone concentrations in girls ( P =8.9 × 10 −5 ). This large-scale study implicates an aetiological role of the epidermal growth factor receptors, infers causal mechanisms relevant to clinical management and prevention, and suggests balancing selection mechanisms involved in PCOS risk.
0
Citation339
0
Save
0

PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study

Amand Schmidt et al.Nov 28, 2016
Statin treatment and variants in the gene encoding HMG-CoA reductase are associated with reductions in both the concentration of LDL cholesterol and the risk of coronary heart disease, but also with modest hyperglycaemia, increased bodyweight, and modestly increased risk of type 2 diabetes, which in no way offsets their substantial benefits. We sought to investigate the associations of LDL cholesterol-lowering PCSK9 variants with type 2 diabetes and related biomarkers to gauge the likely effects of PCSK9 inhibitors on diabetes risk.In this mendelian randomisation study, we used data from cohort studies, randomised controlled trials, case control studies, and genetic consortia to estimate associations of PCSK9 genetic variants with LDL cholesterol, fasting blood glucose, HbA1c, fasting insulin, bodyweight, waist-to-hip ratio, BMI, and risk of type 2 diabetes, using a standardised analysis plan, meta-analyses, and weighted gene-centric scores.Data were available for more than 550 000 individuals and 51 623 cases of type 2 diabetes. Combined analyses of four independent PCSK9 variants (rs11583680, rs11591147, rs2479409, and rs11206510) scaled to 1 mmol/L lower LDL cholesterol showed associations with increased fasting glucose (0·09 mmol/L, 95% CI 0·02 to 0·15), bodyweight (1·03 kg, 0·24 to 1·82), waist-to-hip ratio (0·006, 0·003 to 0·010), and an odds ratio for type diabetes of 1·29 (1·11 to 1·50). Based on the collected data, we did not identify associations with HbA1c (0·03%, -0·01 to 0·08), fasting insulin (0·00%, -0·06 to 0·07), and BMI (0·11 kg/m2, -0·09 to 0·30).PCSK9 variants associated with lower LDL cholesterol were also associated with circulating higher fasting glucose concentration, bodyweight, and waist-to-hip ratio, and an increased risk of type 2 diabetes. In trials of PCSK9 inhibitor drugs, investigators should carefully assess these safety outcomes and quantify the risks and benefits of PCSK9 inhibitor treatment, as was previously done for statins.British Heart Foundation, and University College London Hospitals NHS Foundation Trust (UCLH) National Institute for Health Research (NIHR) Biomedical Research Centre.
0
Citation337
0
Save
0

Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation

Norihiro Kato et al.Sep 21, 2015
John Chambers, Jaspal Kooner, Pim van der Harst, Shyong Tai, Paul Elliott, Jiang He, Norihiro Kato and colleagues performed a genome-wide association study of blood pressure phenotypes in individuals of European, East Asian and South Asian ancestry. They find trait-associated SNPs at 12 loci, some of which are associated with methylation at nearby CpG sites. We carried out a trans-ancestry genome-wide association and replication study of blood pressure phenotypes among up to 320,251 individuals of East Asian, European and South Asian ancestry. We find genetic variants at 12 new loci to be associated with blood pressure (P = 3.9 × 10−11 to 5.0 × 10−21). The sentinel blood pressure SNPs are enriched for association with DNA methylation at multiple nearby CpG sites, suggesting that, at some of the loci identified, DNA methylation may lie on the regulatory pathway linking sequence variation to blood pressure. The sentinel SNPs at the 12 new loci point to genes involved in vascular smooth muscle (IGFBP3, KCNK3, PDE3A and PRDM6) and renal (ARHGAP24, OSR1, SLC22A7 and TBX2) function. The new and known genetic variants predict increased left ventricular mass, circulating levels of NT-proBNP, and cardiovascular and all-cause mortality (P = 0.04 to 8.6 × 10−6). Our results provide new evidence for the role of DNA methylation in blood pressure regulation.
0
Citation318
0
Save
0

Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

John Perry et al.May 31, 2012
Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m²) compared to obese cases (BMI≥30 Kg/m²). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m²) or 4,123 obese cases (BMI≥30 kg/m²), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10⁻⁹, OR = 1.13 [95% CI 1.09-1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00-1.06]). A variant in HMG20A--previously identified in South Asians but not Europeans--was associated with type 2 diabetes in obese cases (P = 1.3×10⁻⁸, OR = 1.11 [95% CI 1.07-1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02-1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10-1.17], P = 3.2×10⁻¹⁴. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05-1.08], P = 2.2×10⁻¹⁶. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.
0
Citation261
0
Save
0

Systematic Evaluation of Pleiotropy Identifies 6 Further Loci Associated With Coronary Artery Disease

Tom Webb et al.Feb 1, 2017
Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10−4 with a range of other diseases/traits. We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.
0
Citation235
0
Save