MA
Mansour Alsulaiman
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
870
h-index:
35
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deep Learning for EEG motor imagery classification based on multi-layer CNNs feature fusion

Syed Amin et al.Jul 3, 2019
Electroencephalography (EEG) motor imagery (MI) signals have recently gained a lot of attention as these signals encode a person’s intent of performing an action. Researchers have used MI signals to help disabled persons, control devices such as wheelchairs and even for autonomous driving. Hence decoding these signals accurately is important for a Brain–Computer interface (BCI) system. But EEG decoding is a challenging task because of its complexity, dynamic nature and low signal to noise ratio. Convolution neural network (CNN) has shown that it can extract spatial and temporal features from EEG, but in order to learn the dynamic correlations present in MI signals, we need improved CNN models. CNN can extract good features with both shallow and deep models pointing to the fact that, at different levels relevant features can be extracted. Fusion of multiple CNN models has not been experimented for EEG data. In this work, we propose a multi-layer CNNs method for fusing CNNs with different characteristics and architectures to improve EEG MI classification accuracy. Our method utilizes different convolutional features to capture spatial and temporal features from raw EEG data. We demonstrate that our novel MCNN and CCNN fusion methods outperforms all the state-of-the-art machine learning and deep learning techniques for EEG classification. We have performed various experiments to evaluate the performance of the proposed CNN fusion method on public datasets. The proposed MCNN method achieves 75.7% and 95.4% on the BCI Competition IV-2a dataset and the High Gamma Dataset respectively. The proposed CCNN method based on autoencoder cross-encoding achieves more than 10% improvement for cross-subject EEG classification.
0
Citation389
0
Save
0

Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization

M. Hossain et al.Jan 31, 2019
Deep Convolutional Neural Network (CNN) has achieved remarkable results in computer vision tasks for end-to-end learning. We evaluate here the power of a deep CNN to learn robust features from raw Electroencephalogram (EEG) data to detect seizures. Seizures are hard to detect, as they vary both inter- and intra-patient. In this article, we use a deep CNN model for seizure detection task on an open-access EEG epilepsy dataset collected at the Boston Children's Hospital. Our deep learning model is able to extract spectral, temporal features from EEG epilepsy data and use them to learn the general structure of a seizure that is less sensitive to variations. For cross-patient EEG data, our method produced an overall sensitivity of 90.00%, specificity of 91.65%, and overall accuracy of 98.05% for the whole dataset of 23 patients. The system can detect seizures with an accuracy of 99.46%. Thus, it can be used as an excellent cross-patient seizure classifier. The results show that our model performs better than the previous state-of-the-art models for patient-specific and cross-patient seizure detection task. The method gave an overall accuracy of 99.65% for patient-specific data. The system can also visualize the special orientation of band power features. We use correlation maps to relate spectral amplitude features to the output in the form of images. By using the results from our deep learning model, this visualization method can be used as an effective multimedia tool for producing quick and relevant brain mapping images that can be used by medical experts for further investigation.
0

Development of the Arabic Voice Pathology Database and Its Evaluation by Using Speech Features and Machine Learning Algorithms

Tamer Mesallam et al.Jan 1, 2017
A voice disorder database is an essential element in doing research on automatic voice disorder detection and classification. Ethnicity affects the voice characteristics of a person, and so it is necessary to develop a database by collecting the voice samples of the targeted ethnic group. This will enhance the chances of arriving at a global solution for the accurate and reliable diagnosis of voice disorders by understanding the characteristics of a local group. Motivated by such idea, an Arabic voice pathology database (AVPD) is designed and developed in this study by recording three vowels, running speech, and isolated words. For each recorded samples, the perceptual severity is also provided which is a unique aspect of the AVPD. During the development of the AVPD, the shortcomings of different voice disorder databases were identified so that they could be avoided in the AVPD. In addition, the AVPD is evaluated by using six different types of speech features and four types of machine learning algorithms. The results of detection and classification of voice disorders obtained with the sustained vowel and the running speech are also compared with the results of an English-language disorder database, the Massachusetts Eye and Ear Infirmary (MEEI) database.
0
Citation232
0
Save