RT
Ravindra ThakkarVerified
Verified Account
Verified
Physiology PhD '22, Kansas State University
Member for 1 month and 10 days
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
28
(79% Open Access)
Cited by:
212
h-index:
9
/
i10-index:
8
Reputation
Atmospheric Science
50%
Biomaterials
45%
Materials Chemistry
43%
Show more
How is this calculated?
Publications
0

Thermodynamics of Adsorption on Graphenic Surfaces from Aqueous Solution

Ettayapuram Singam et al.Dec 28, 2018
Adsorption of organic molecules from aqueous solution to the surface of carbon nanotubes or graphene is an important process in many applications of these materials. Here we use molecular dynamics simulation, supplemented by analytical chemistry, to explore in detail the adsorption thermodynamics of a diverse set of aromatic compounds on graphenic materials, elucidating the effects of the solvent, surface coverage, surface curvature, defects, and functionalization by hydroxy groups. We decompose the adsorption free energies into entropic and enthalpic components and find that different classes of compounds-such as phenols, benzoates, and alkylbenzenes-can easily be distinguished by the relative contributions of entropy and enthalpy to their adsorption free energies. Overall, entropy dominates for the more hydrophobic compounds, while enthalpy plays the greatest role for more hydrophilic compounds. Experiments and independent simulations using two different force field frameworks (CHARMM and Amber) support the robustness of these conclusions. We determine that concave curvature is generally associated with greater adsorption affinity, more favorable enthalpy, and greater contact area, while convex curvature reduces both adsorption enthalpy and contact area. Defects on the graphene surfaces can create concave curvature, resulting in localized binding sites. As the graphene surface becomes covered with aromatic solutes, the affinity for adsorbing an additional solute increases until a complete monolayer is formed, driven by more favorable enthalpy and partially canceled by less favorable entropy. Similarly, hydroxylation of the surface leads to preferential adsorption of the aromatic solutes to remaining regions of bare graphene, resulting in less favorable adsorption entropy, but compensated by an increase in favorable enthalpic interactions.
0

Nano-confinement-driven enhanced magnetic relaxivity of SPIONs for targeted tumor bioimaging

Tuyen Nguyen et al.Nov 22, 2017
Superparamagnetic iron oxide nanoparticles (SPIONs) are highly biocompatible and have a versatile synthetic technique based on coprecipitation, reduction-precipitation, and hydrothermal methods, where Fe3+ and Fe2+ react in aqueous solutions; both these ions are present in our body and have clear metabolic pathways; therefore, they have attracted extensive research interest and development in the field of diagnostic imaging and therapy. However, most SPION-based clinical diagnostic contrast agents are discontinued due to severe pain, low transverse magnetic relaxivity range of 80-180 mM-1 s-1, shorter circulation half-life, and lack of disease specificity. Therefore, in this study, we engineered a bone cancer-targeted hybrid nanoconstruct (HNC) with a high transverse magnetic relaxivity of 625 mM-1 s-1, which was significantly higher than that of clinical contrast agents. The engineered HNC is peripherally decorated with a bone-seeking agent, alendronic acid-conjugated phospholipid, exhibiting a hydrodynamic size of 80 nm with a negative surface potential, -35 mV. The interior skeleton of the HNC is composed of biodegradable and biocompatible poly(l-lactic-co-glycolic acid) (PLGA), in which 5 nm SPIONs are confined. We have successfully tuned the distance between the confined SPIONs from 0.5 to 4 nm, as revealed by transmission electron microscopy (TEM) images and magnetic resonance image (MRI) phantoms. This cluster confinement dramatically enhances magnetic relaxivity possibly due to the increase in net local magnetization due to proximal field inhomogeneity. In an in vitro examination, 80% of HNC is found to bind with hydroxyapatite (HAp), which when characterized by TEM shows a painting of SPIONs over a HAp crystal. HNC is found to accumulate in mouse osteosarcoma tumor (K7M2 tumor model); both MRI and histological examination of the tumor show the potential of HNC as targeting agents for diagnosis of tumor in the bone.
0

Water extract from Euglena gracilis prevents lung carcinoma growth in mice by attenuation of the myeloid-derived cell population

Susumu Ishiguro et al.Apr 28, 2020
The partially purified water extract from Euglena gracilis (EWE) was evaluated for its antitumor and immunomodulatory effects in cell cultures and in a mouse orthotopic lung carcinoma allograft model. In two-dimensional cell culture, the EWE treatment inhibited cell growth of both murine Lewis lung carcinoma (LLC) and human lung carcinoma cells (A549 and H1299) in a dose- and time-dependent manner. In contrast, the growth of mouse bone marrow cells (BMCs), but not mouse splenocytes (SPLs), was stimulated by the treatment with EWE. In three-dimensional spheroid culture, spheroid growth of LLC cells was significantly attenuated by EWE treatment. In a mouse LLC orthotopic allograft model, pretreatment with EWE (150–200 mg/kg/day, via drinking water) three weeks prior to the LLC cell inoculation, but not post-treatment after LLC cell inoculation, significantly attenuated the growth of LLC tumors in immunocompetent syngeneic mouse lung. This tumor growth attenuation coincided with a significant decrease in the population of myeloid-derived cells, primarily neutrophils. Flow cytometric analysis revealed that the EWE treatment significantly attenuated growth of granulocytic myeloid-derived suppressor cells (gMDSC) in BMCs and that this decrease was due to induction of gMDSC-specific apoptosis and differentiation of monocytic MDSCs (mMDSC) to macrophages. The present study provides evidence that EWE pretreatment inhibits lung carcinoma growth mainly by stimulating host antitumor immunity through attenuation of growth of gMDSCs and decreasing the number of peripheral granulocytes. This study suggests that the partially purified extract derived from Euglena gracilis contains significant bioactive materials that prevent lung carcinoma growth.
0
Citation14
0
Save
0

Cell Wall Membrane Fraction ofChlorella sorokinianaEnhances Host Antitumor Immunity and Inhibits Colon Carcinoma Growth in Mice

Susumu Ishiguro et al.Jan 1, 2020
A colon cancer growth inhibitor partially purified from the isolated cell wall membrane fraction of Chlorella sorokiniana, here referred to as Chlorella membrane factor (CMF), was evaluated for its antitumor and immunomodulatory effects in cell culture and in a colon carcinoma mouse model. The CMF treatment dose- and time-dependently inhibited colon carcinoma cell growth in 2-dimensional cultures. Treatment with CMF also significantly inhibited the growth of colon carcinoma spheroids in 3-dimensional cell culture in coculture with T lymphocytes. In a mouse CT26 colon carcinoma peritoneal dissemination model, intraperitoneal injection of CMF (10 or 30 mg dry weight/kg body weight, every other day) dose-dependently and significantly attenuated the growth of tumor nodules via induction of tumor cell apoptosis. Evaluation of immune cell populations in ascites showed that CMF treatment tended to increase T lymphocytes but lower granulocyte populations. The present study suggests that the cell wall membrane fraction of Chlorella sorokiniana contains a bioactive material that inhibits colon carcinoma growth via direct cell growth inhibition and stimulation of host antitumor immunity. Hence, it is suggested that the Chlorella cell wall membrane extract or a bioactive substance in the extract is an attractive complementary medicine for cancer therapy.
0
Citation12
0
Save
0

Organic contaminants and atmospheric nitrogen at the graphene–water interface: a simulation study

Ravindra Thakkar et al.Jan 1, 2022
Ordered nanoscale patterns have been observed by atomic force microscopy at graphene-water and graphite-water interfaces. The two dominant explanations for these patterns are that (i) they consist of self-assembled organic contaminants or (ii) they are dense layers formed from atmospheric gases (especially nitrogen). Here we apply molecular dynamics simulations to study the behavior of dinitrogen and possible organic contaminants at the graphene-water interface. Despite the high concentration of N2 in ambient air, we find that its expected occupancy at the graphene-water interface is quite low. Although dense (disordered) aggregates of dinitrogen have been observed in previous simulations, our results suggest that they are stable only in the presence of supersaturated aqueous N2 solutions and dissipate rapidly when they coexist with nitrogen gas near atmospheric pressure. On the other hand, although heavy alkanes are present at only trace concentrations (micrograms per cubic meter) in typical indoor air, we predict that such concentrations can be sufficient to form ordered monolayers that cover the graphene-water interface. For octadecane, grand canonical Monte Carlo suggests nucleation and growth of monolayers above an ambient concentration near 6 μg m-3, which is less than some literature values for indoor air. The thermodynamics of the formation of these alkane monolayers includes contributions from the hydration free-energy (unfavorable), the free-energy of adsorption to the graphene-water interface (highly favorable), and integration into the alkane monolayer phase (highly favorable). Furthermore, the peak-to-peak distances in AFM force profiles perpendicular to the interface (0.43-0.53 nm), agree with the distances calculated in simulations for overlayers of alkane-like molecules, but not for molecules such as N2, water, or aromatics. Taken together, these results suggest that ordered domains observed on graphene, graphite, and other hydrophobic materials in water are consistent with alkane-like molecules occupying the interface.
0

De novodesign of a stapled peptide targeting SARS-CoV-2 spike protein receptor-binding domain

Ravindra Thakkar et al.Jan 1, 2023
Although effective vaccines have been developed against SARS-CoV-2, many regions in the world still have low rates of vaccination and new variants with mutations in the viral spike protein have reduced the effectiveness of most available vaccines and treatments. There is an urgent need for a drug to cure this disease and prevent infection. The SARS-CoV-2 virus enters the host cell through protein-protein interaction between the virus's spike protein and the host's angiotensin converting enzyme (ACE2). Using protein design software and molecular dynamics simulations, we have designed a 17-residue peptide (pep39), that binds to the spike protein receptor-binding domain (RBD) and blocks interaction of spike protein with ACE2. We have confirmed the binding activity of the designed peptide for the original spike protein and the delta variant spike protein using micro-cantilever and bio-layer interferometry (BLI) based methods. We also confirmed that pep39 strongly inhibits SARS-CoV-2 virus replication in Vero E6 cells. Taken together these data suggest that a newly designed spike protein RBD blocking peptide pep39 has a potential as a SARS-CoV-2 virus inhibitor.
0
Citation5
0
Save
Load More