Fatheali ShilarVerified
Verified Account
Verified
A Visionary Researcher and Expert Reviewer Driving Innovation Across Material Science, Nanotechnology, and Engineering Disciplines.
Civil Engineering Master's Degree '16, Visvesvaraya Technological University
Member for 16 days
Fatheali Shilar is a distinguished researcher and accomplished academic with an M-Tech degree, who has made significant contributions across various interdisciplinary domains. As a reviewer for numerous Scopus-indexed journals, he has demonstrated expertise in critically evaluating high-quality scie...
Show more
Achievements
Cited Author
Open Access Advocate
Peer Reviewer
Key Stats
Upvotes received:
0
Publications:
19
(63% Open Access)
Cited by:
431
h-index:
11
/
i10-index:
11
Reputation
Civil And Structural Engineering
55%
Building And Construction
35%
Industrial And Manufacturing Engineering
21%
Show more
How is this calculated?
Publications
3

Review on the Relationship between Nano Modifications of Geopolymer Concrete and Their Structural Characteristics

Fatheali Shilar et al.Mar 30, 2022
The main objective of this review is to study some important nanomaterials and their impact on the performance of geopolymer concrete. This paper is an investigation into trends and technology in the development of different nanomaterials to develop higher structural performance geopolymer concrete. The effect of the alkaline to binder and sodium silicate to sodium hydroxide ratio on the performances of geopolymer performances is studied. The relationship between setting time and slump is evaluated through the ternary plot, the variation in compressive strength values is evaluated using the kernel density plot, and the relationship between split tensile and flexural strength is investigated using the scattering interval plot. Regression analysis is carried out among water absorption and bulk-density result values obtained from previous literature. As the molarity and alkaline to binder (A/B) ratios increase, the strength development of geopolymer concrete increases up to a specific limit. The addition of a small quantity of nanomaterials, namely, nano silica, nano alumina, carbon nano tubes, and nano clay, led to the maximum strength development of geopolymer concrete. Incorporating these nanomaterials into the geopolymer significantly refines the structural stability, improving its durability. The various products in GP composites emerging from the incorporation of highly reactive SEM, XRD, and FTIR analysis of nanomaterials reveal that the presence of nanomaterials, which enhances the rate of polymerization, leads to better performance of the geopolymer.
3

Evaluation of structural performances of metakaolin based geopolymer concrete

Fatheali Shilar et al.Aug 28, 2022
Last few decades, there has been a substantial advancement of geopolymer (GP) as a Portland cement substitute. It is vital to investigate potential building uses for geopolymer concrete (GPC). Six different mixes were cast for an alkaline to binder (A/B) ratio of 0.25–0.50 with an interval of 0.05. Metakaolin-based geopolymer were cured at ambient temperature and tested for 7, 14, 28, and 90 days. Metakaolin-Marble (MM00) mix was observed to have a maximum slump. For an A/B ratio of 0.35, maximum compressive, split tensile, flexural strength and modulus of elasticity was achieved. For elevated temperature resistance, geopolymer concrete cubes were exposed to temperatures (T) of 200, 400, to 600 C. As the temperature increased, compressive strength (CS) reduced. As the increase of the alkaline to binder (A/B) ratio, the strength of geopolymer concrete increases up to a specific limit beyond the limit strength decline. An empirical formula for split tensile (STS) value prediction using compressive strength values is proposed, valid for determining split tensile strength value. The correlation between compressive strength, split tensile strength, flexural strength, and bulk density varies linearly for a quadratic polynomial.
3

Optimization of Alkaline Activator on the Strength Properties of Geopolymer Concrete

Fatheali Shilar et al.Jun 16, 2022
This study investigates the effects of red mud on the performance of geopolymer concrete in regard to fresh and mechanical properties. Red mud was used as a binder, and GGBS replaced the binder. Different proportions of red mud ranging from 0 to 30% with an interval of 2% and activator agents such as KOH and K2SiO3 for various alkaline-to-binder ratios such as 0.30, 0.40, and 0.50 were used; their effect on the fresh and mechanical properties of geopolymer concrete were the focusing parameter on the current study. Fresh properties such as setting time, slump, compaction factor, and vee-bee consistometer test, and mechanical properties such as compressive strength, split tensile strength, flexural strength, modulus of elasticity, and impact energy were studied. ANOVA and radar plot analysis were studied for various alkaline to binder (A/B) compressive strength results tested for 7 to 90 days. The increase of red mud quantity caused the decline of workability, but there was continuous enhancement of mechanical properties of GPC up to a specific limit. An alkaline-to-binder ratio of 0.4 shows excellent results compared with other ratios at ambient conditions for strength properties. ANOVA and radar plot reveal that A/B of 0.40 for 90 days shows excellent results compared with other ratios, and CS values vary in a linear manner.
3

Development and optimization of an eco-friendly geopolymer brick production process for sustainable masonry construction

Fatheali Shilar et al.May 16, 2023
Geopolymer has emerged as an alternative material in construction. The prime objective of this investigation is to produce high-quality and eco-friendly geopolymer bricks. The current research involves a detailed analysis of the sustainability study of geopolymer bricks, which includes investigating the effects of granite waste powder and iron chips on structural properties. Additionally, economic analysis through a linear programming model is investigated.Geopolymer brick was prepared with size 190 × 90×90 mm, and the weight as 3 kg, activator agent as sodium hydroxide solution with 10 M, and alkaline-to-binder ratio of 2.5, specimens were cast at ambient condition, mechanical properties were of casted sample were tested at 7 and 28 days.It was found that the SIC3 mix has a higher embodied energy and carbon emission value than FGG1 and FGG2. FG5-mix showed maximum compressive strength and water absorption of 10.1 MPa and 16.8%, respectively, with an optimum percentage of granite waste powder and iron chip of 20%. The prism unit for 1:3 showed maximum compressive stress compared to 1:4 and 1.5. Furthermore, using Scanning Electron Microscopy, the specimen with granite waste powder and iron chip showed slightly lamellar and granule-covered surfaces. When X-Ray diffraction analysis images were studied, peaks responsible for geopolymerization were identified, and their impact on geopolymer properties was discussed. Geopolymer brick shows better structural performance compared with burnt clay and flyash brick.
3
Paper
Citation35
0
Save
3

Evaluation of the Effect of Granite Waste Powder by Varying the Molarity of Activator on the Mechanical Properties of Ground Granulated Blast-Furnace Slag-Based Geopolymer Concrete

Fatheali Shilar et al.Jan 13, 2022
Industrial waste such as Ground Granulated Blast-Furnace Slag (GGBS) and Granite Waste Powder (GWP) is available in huge quantities in several states of India. These ingredients have no recognized application and are usually shed in landfills. This process and these materials are sources of severe environmental pollution. This industrial waste has been utilized as a binder for geopolymers, which is our primary focus. This paper presents the investigation of the optimum percentage of granite waste powder as a binder, specifically, the effect of molar and alkaline to binder (A/B) ratio on the mechanical properties of geopolymer concrete (GPC). Additionally, this study involves the use of admixture SP-340 for better performance of workability. Current work focuses on investigating the effect of a change in molarity that results in strength development in geopolymer concrete. The limits for the present work were: GGBS partially replaced by GWP up to 30%; molar ranging from 12 to 18 with the interval of 2 M; and A/B ratio of 0.30. For 16 M of GPC, a maximum slump was observed for GWP with 60 mm compared to other molar concentration. For 16 M of GPC, a maximum compressive strength (CS) was observed for GWP with 20%, of 33.95 MPa. For 16 M of GPC, a maximum STS was observed for GWP, with 20%, of 3.15 MPa. For 16 M of GPC, a maximum FS was observed for GWP, with 20%, of 4.79 MPa. Geopolymer concrete has better strength properties than conventional concrete. GPC is $13.70 costlier than conventional concrete per cubic meter.
3

Assessment of Destructive and Nondestructive Analysis for GGBS Based Geopolymer Concrete and Its Statistical Analysis

Fatheali Shilar et al.Jul 31, 2022
Geopolymer is the alternative to current construction material trends. In this paper, an attempt is made to produce a sustainable construction composite material using geopolymer. Ground granulated blast furnace slag (GGBS)-based geopolymer concrete was prepared and tested for different alkaline to binder ratios (A/B). The effect of various temperatures on compressive strength properties was assessed. The cubes were exposed to temperature ranging from 50 to 70 °C for a duration ranging from 2 to 10 h, and the compressive strength of the specimens was analyzed for destructive and non-destructive analysis and tested for 7, 28, and 90 days. The obtained compressive strength (CS) results were analyzed employing the probability plot (PP) curve, distribution overview curve (DOC), probability density function (PDF), Weibull, survival, and hazard function curve. Maximum compressive strength was achieved for the temperature of 70 °C and an A/B of 0.45 for destructive tests and non-destructive tests with 44.6 MPa and 43.56 MPa, respectively, on 90 days of testing. The survival and hazard function curves showed incremental distribution characteristics for 28 and 90 days of testing results with a probability factor ranging from 0.8 to 1.0.
Load More