FN
Florian Neukart
Chief Product Officer @ Terra Quantum AG, Asst. Prof. @ LIACS in Leiden
Astronomy And Astrophysics MS, Liverpool John Moores University
+ 2 more
Member for 1 year and 27 days
I am a computer scientist, physicist, and scientific author, having contributed to quantum computing and artificial intelligence. My academic background includes Master’s degrees in computer science, physics, and information technology and a Ph.D. focusing on the synergy between AI and quantum compu...
Show more
Achievements
Cited Author
Active user
Key Stats
Upvotes received:
17
Publications:
59
(49% Open Access)
Cited by:
1,135
h-index:
14
/
i10-index:
17
Reputation
Artificial Intelligence
76%
Cardiology And Cardiovascular Medicine
25%
Biomedical Engineering
15%
Show more
How is this calculated?
Publications
1

Quantum approximate optimization of non-planar graph problems on a planar superconducting processor

Matthew Harrigan et al.Feb 4, 2021
We demonstrate the application of the Google Sycamore superconducting qubit quantum processor to combinatorial optimization problems with the quantum approximate optimization algorithm (QAOA). Like past QAOA experiments, we study performance for problems defined on the (planar) connectivity graph of our hardware; however, we also apply the QAOA to the Sherrington-Kirkpatrick model and MaxCut, both high dimensional graph problems for which the QAOA requires significant compilation. Experimental scans of the QAOA energy landscape show good agreement with theory across even the largest instances studied (23 qubits) and we are able to perform variational optimization successfully. For problems defined on our hardware graph we obtain an approximation ratio that is independent of problem size and observe, for the first time, that performance increases with circuit depth. For problems requiring compilation, performance decreases with problem size but still provides an advantage over random guessing for circuits involving several thousand gates. This behavior highlights the challenge of using near-term quantum computers to optimize problems on graphs differing from hardware connectivity. As these graphs are more representative of real world instances, our results advocate for more emphasis on such problems in the developing tradition of using the QAOA as a holistic, device-level benchmark of quantum processors.
1

A Hybrid Solution Method for the Capacitated Vehicle Routing Problem Using a Quantum Annealer

Sebastian Feld et al.Jun 25, 2019
The Capacitated Vehicle Routing Problem (CVRP) is an NP-optimization problem (NPO) that has been of great interest for decades for both, science and industry. The CVRP is a variant of the vehicle routing problem characterized by capacity constrained vehicles. The aim is to plan tours for vehicles to supply a given number of customers as efficiently as possible. The problem is the combinatorial explosion of possible solutions, which increases superexponentially with the number of customers. Classical solutions provide good approximations to the globally optimal solution. D-Wave's quantum annealer is a machine designed to solve optimization problems. This machine uses quantum effects to speed up computation time compared to classic computers. The problem on solving the CVRP on the quantum annealer is the particular formulation of the optimization problem. For this, it has to be mapped onto a quadratic unconstrained binary optimization (QUBO) problem. Complex optimization problems such as the CVRP can be translated to smaller subproblems and thus enable a sequential solution of the partitioned problem. This work presents a quantum-classic hybrid solution method for the CVRP. It clarifies whether the implemenation of such a method pays off in comparison to existing classical solution methods regarding computation time and solution quality. Several approaches to solving the CVRP are elaborated, the arising problems are discussed, and the results are evaluated in terms of solution quality and computation time.
1

Industry quantum computing applications

Andreas Bayerstadler et al.Nov 13, 2021
Abstract Quantum computing promises to overcome computational limitations with better and faster solutions for optimization, simulation, and machine learning problems. Europe and Germany are in the process of successfully establishing research and funding programs with the objective to advance the technology’s ecosystem and industrialization, thereby ensuring digital sovereignty, security, and competitiveness. Such an ecosystem comprises hardware/software solution providers, system integrators, and users from research institutions, start-ups, and industry. The vision of the Quantum Technology and Application Consortium (QUTAC) is to establish and advance the quantum computing ecosystem, supporting the ambitious goals of the German government and various research programs. QUTAC is comprised of ten members representing different industries, in particular automotive manufacturing, chemical and pharmaceutical production, insurance, and technology. In this paper, we survey the current state of quantum computing in these sectors as well as the aerospace industry and identify the contributions of QUTAC to the ecosystem. We propose an application-centric approach for the industrialization of the technology based on proven business impact. This paper identifies 24 different use cases. By formalizing high-value use cases into well-described reference problems and benchmarks, we will guide technological progress and eventually commercialization. Our results will be beneficial to all ecosystem participants, including suppliers, system integrators, software developers, users, policymakers, funding program managers, and investors.
1
Citation54
0
Save
1

Quantum-Enhanced Reinforcement Learning for Finite-Episode Games with Discrete State Spaces

Florian Neukart et al.Feb 1, 2018
Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.
1

Quantum-Assisted Cluster Analysis on a Quantum Annealing Device

Florian Neukart et al.Jun 14, 2018
We present an algorithm for quantum-assisted cluster analysis (QACA) that makes use of the topological properties of a D-Wave 2000Q quantum processing unit (QPU). Clustering is a form of unsupervised machine learning, where instances are organized into groups whose members share similarities. The assignments are, in contrast to classification, not known a priori, but generated by the algorithm. We explain how the problem can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that the introduced quantum-assisted clustering algorithm is, regarding accuracy, equivalent to commonly used classical clustering algorithms. Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems [1], have been subject to multiple analyses in research, with the aim of characterizing the technology’s usefulness for optimization, sampling, and clustering [2–16, 38]. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical clustering algorithm.
1
Citation16
0
Save
Load More