Cadmium (Cd) is a well-known pollutant in agricultural soil, affecting human health through the food chain. To combat this issue, Ca + Mg (25 mg L −1 ) nanocomposite and Bacillus pumilus , either alone or combined, were applied to rice plants under Cd (5 mg kg −1 , 10 mg kg −1 ) contamination. In our study, growth and yield traits demonstrated the beneficial influence of Ca + Mg and B. pumilus application in improving rice defense mechanism by reducing Cd stress. Combined Ca + Mg and B. pumilus application increased SPAD (15), total chlorophyll (18), chlorophyll a (11), chlorophyll b (22), and carotenoids (21%) with Cd (10 mg kg −1 ), compared to the application alone. Combined Ca + Mg and B. pumilus application significantly regulated MDA (15), H 2 O 2 (13), EL (10), and O 2 •– (24%) in shoots under Cd (10 mg kg −1 ), compared to the application alone. Cd (10 mg kg −1 ) increased the POD (22), SOD (21), APX (12), and CAT (13%) in shoots with combined Ca + Mg and B. pumilus application, compared to the application alone. Combined Ca + Mg and B. pumilus application significantly reduced Cd accumulation in roots (22), shoots (13), and grains (20%) under Cd (10 mg kg −1 ), compared to the application alone. Consequently, the combined application of Ca + Mg and B. pumilus is a sustainable solution to enhance crop production under Cd stress.