Dominikus BrianVerified
Verified Account
Verified
Editor for Materials Science | ResearchPreneur | Founder and CTO of DreamBrook Labs
Chemistry New York University
+ 2 more
Member for 8 months and 21 days
Domi is a ResearchPreneur passionate in Building Cyber-Physical and Economic Infrastructure for the Fifth Paradigm of Science. Domi is a Full-Stack (Lab, Theoretical, and Computational) Material Scientist, a PhD Dropout (ABD) from New York University, forgo Researcher Job offer from Germany's Hel...
Show more
Achievements
Active user
Open Science Supporter
Cited Author
Peer Reviewer
Key Stats
Upvotes received:
1398
Publications:
14
(21% Open Access)
Cited by:
120
h-index:
8
/
i10-index:
8
Amount funded:
3,390
Reputation
Computational Mechanics
38%
Polymers And Plastics
38%
Atomic And Molecular Physics, And Optics
33%
Show more
How is this calculated?
Publications
2

Tailoring Characteristics of PEDOT:PSS Coated on Glass and Plastics by Ultrasonic Substrate Vibration Post Treatment

Nadia Gholampour et al.Sep 24, 2018
In this work, we excited as-spun wet films of PEDOT:PSS by ultrasonic vibration with varying frequency and power. This is a low-cost and facile technique for tailoring the structural and surface characteristics of solution-processed thin films and coatings. We deposited the coatings on both rigid and flexible substrates and performed various characterization techniques, such as atomic force microscopy (AFM), scanning electronic microscopy (SEM), X-ray photoelectron spectroscopy (XPS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), transmittance, electrical conductivity, and contact angle measurements, to understand how the ultrasonic vibration affects the coating properties. We found that as a result of ultrasonic vibration, PEDOT:PSS sheet conductivity increases up to five-fold, contact angle of water on PEDOT:PSS increases up to three-fold, and PEDOT:PSS roughness on glass substrates substantially decreases. Our results affirm that ultrasonic vibration can favor phase separation of PEDOT and PSS and rearrangement of PEDOT-rich charge transferring grains. In addition to providing a systematic study on the effect of ultrasonic frequency and power on the film properties, this work also proves that the ultrasonic vibration is a novel method to manipulate and tailor a wide range of properties of solution-processed thin films, such as compactness, chain length and arrangement of polymer molecules, conductivity, and surface wettability. This ultrasonication method can serve organic, printed and flexible electronics.
2

Impact dynamics and deposition of perovskite droplets on PEDOT:PSS and TiO2 coated glass substrates

Dominikus Brian et al.Jul 1, 2019
Perovskite solutions are widely used, to develop next generation photovoltaic solar cells and printed electronics. Droplet-based coating route, comprising inkjet printing, aerosol jet, and spray coating, is a viable deposition approach for high volume manufacturing of such devices. Perovskites are emerging ionic solutions deposited on unconventional substrates, where their droplet impact dynamics and deposition behavior is unexplored. In this work, we studied the impact dynamics of popular perovskite solution droplets, i.e. methylammonium lead halides (CH3NH3PbI3 and CH3NH3PbI3-xClx) on three surfaces, viz. glass coated with thin films of PEDOT:PSS, and compact and mesoporous TiO2, widely used in emerging optoelectronic devices. Droplets of two solutions, with initial diameter ∼2.2 mm, were impacted onto three substrates, with impinging velocities of 1.40, 1.72, and 1.98 m/s, generating 18 experimental conditions, in the range of 176 < We < 402, where We is the Weber number. Using top- and side-view high-speed imaging, we studied temporal evolution trend in kinematic and spreading stages, and maximum droplet spreading in the wetting stage. We also analyzed the prediction power of existing scaling laws, theoretical and semi-empirical models for maximum spreading diameter with respect to droplet initial diameter, βmax, against perovskite solution droplets. We found that for the common coated substrates used here, and also in photovoltaic devices, the relative roughness with respect to droplet size was small, and the coated substrates were quite wetting with small contact angles. Thus, the perovskite solution droplet spreading was found to be a function of the We number, according to an existing scaling law and correlation for common liquids, where the coefficient of the correlation was tuned for methylammonium perovskite solution droplets by curve fitting, yielding a modified empirical correlation in the form of βmax=0.8We0.25.
2
Paper
Citation17
0
Save
2

Analysis of impact dynamics and deposition of single and multiple PEDOT:PSS solution droplets

Dominikus Brian et al.Aug 6, 2019
In line with recent efforts and developments in emerging printed electronics, using solution-processed coatings, we studied the impact dynamics and deposition of single and multiple polymeric aqueous and isopropanol (IPA)-diluted PEDOT:PSS solution droplets, across seven orders of magnitude timescale. The solution properties and release height of droplets from a needle were varied to generate Weber numbers in the range of 94–510, with two Ohnesorge numbers of 0.0108 and 0.0195, for aqueous and IPA-diluted PEDOT:PSS solution droplets, respectively. The former droplet on FTO glass substrate is partially wetting, whereas the latter is fully wetting, generating different phenomena in the prolonged wetting and drying time. The solutions showed shear-thinning behavior at high shear rates, but viscosity immediately reached a saturated limit at higher shear rates and, therefore, the fluids behaved as Newtonian fluids during impact. Among the results, the addition of IPA resulted in improved spreading of PEDOT:PSS in the wetting phase, with wetting trend following the Tanner’s law. We then assessed the prediction power of existing models to predict maximum spreading, taking into account the role of measured static and dynamic contact angles during spreading. Multiple droplets (2, 5, and 15) were impacted nearly simultaneously and formed lines and films. We examined the bridge formation, spreading length growth, and shape evolution of multiple coalescing droplets. We also correlated the formed surface area with the number of coalescing droplets and discussed the ideality of the shape of the formed film. The results of this study will help to pave the way for large-scale manufacturing of organic coatings using droplet-based methods.
2

Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase

Zhubin Hu et al.Sep 23, 2021
Model Hamiltonians constructed from quantum chemistry calculations and molecular dynamics simulations are widely used for simulating nonadiabatic dynamics in the condensed phase. The most popular two-state spin-boson model could be built by mapping the all-atom anharmonic Hamiltonian onto a two-level system bilinearly coupled to a harmonic bath using the energy gap time correlation function. However, for more than two states, there lacks a general strategy to construct multi-state harmonic (MSH) models since the energy gaps between different pairs of electronic states are not entirely independent and need to be considered consistently. In this paper, we extend the previously proposed approach for building three-state harmonic models for photoinduced charge transfer to the arbitrary number of electronic states with a globally shared bath and the system–bath couplings are scaled differently according to the reorganization energies between each pair of states. We demonstrate the MSH model construction for an organic photovoltaic carotenoid–porphyrin–C60 molecular triad dissolved in explicit tetrahydrofuran solvent. Nonadiabatic dynamics was simulated using mixed quantum-classical techniques, including the linearized semiclassical and symmetrical quasiclassical dynamics with the mapping Hamiltonians, mean-field Ehrenfest, and mixed quantum-classical Liouville dynamics in two-state, three-state, and four-state harmonic models of the triad system. The MSH models are shown to provide a general and flexible framework for simulating nonadiabatic dynamics in complex systems.
1

Three-state harmonic models for photoinduced charge transfer

Dominikus Brian et al.May 4, 2021
A widely used strategy for simulating the charge transfer between donor and acceptor electronic states in an all-atom anharmonic condensed-phase system is based on invoking linear response theory to describe the system in terms of an effective spin-boson model Hamiltonian. Extending this strategy to photoinduced charge transfer processes requires also taking into consideration the ground electronic state in addition to the excited donor and acceptor electronic states. In this paper, we revisit the problem of describing such nonequilibrium processes in terms of an effective three-state harmonic model. We do so within the framework of nonequilibrium Fermi’s golden rule (NE-FGR) in the context of photoinduced charge transfer in the carotenoid–porphyrin–C60 (CPC60) molecular triad dissolved in explicit tetrahydrofuran (THF). To this end, we consider different ways for obtaining a three-state harmonic model from the equilibrium autocorrelation functions of the donor–acceptor, donor–ground, and acceptor–ground energy gaps, as obtained from all-atom molecular dynamics simulations of the CPC60/THF system. The quantum-mechanically exact time-dependent NE-FGR rate coefficients for two different charge transfer processes in two different triad conformations are then calculated using the effective three-state model Hamiltonians as well as a hierarchy of more approximate expressions that lead to the instantaneous Marcus theory limit. Our results show that the photoinduced charge transfer in CPC60/THF can be described accurately by the effective harmonic three-state models and that nuclear quantum effects are small in this system.
1

Charge-Transfer Landscape Manifesting the Structure–Rate Relationship in the Condensed Phase Via Machine Learning

Dominikus Brian et al.Nov 26, 2021
In this work, we develop a machine learning (ML) strategy to map the molecular structure to condensed phase charge-transfer (CT) properties including CT rate constants, energy levels, electronic couplings, energy gaps, reorganization energies, and reaction free energies which are called CT fingerprints. The CT fingerprints of selected landmark structures covering the conformation space of an organic photovoltaic molecule dissolved in an explicit solvent are computed and used to train ML models using kernel ridge regression. The ML models show high predictive power with R2 > 0.97 and both mean absolute error and root-mean-square error within chemical accuracy. The CT landscape for millions of molecular dynamics sampled structures is thus constructed, which allows for instant prediction of CT rate properties, given any conformation of the molecule. We demonstrate some immediate utilities of the CT landscape such as calculating the ensemble-averaged CT rate constant and interpreting the effects of molecular structural features on the CT rate. The unprecedented CT landscape will be useful for investigating real-time CT dynamics in nanoscale- and mesoscale-condensed phase systems and for the optimal fabrication design for homogeneous and heterogeneous optoelectronic devices.
2

Generalized quantum master equation: A tutorial review and recent advances

Dominikus Brian et al.Oct 1, 2021
The generalized quantum master equation (GQME) provides a general and exact approach for simulating the reduced dynamics in open quantum systems where a quantum system is embedded in a quantum environment. Dynamics of open quantum systems is important in excitation energy, charge, and quantum coherence transfer as well as reactive photochemistry. The system is usually chosen to be the interested degrees of freedom such as the electronic states in light-harvesting molecules or tagged vibrational modes in a condensed-phase system. The environment is also called the bath, whose influence on the system has to be considered, and for instance can be described by the GQME formalisms using the projection operator technique. In this review, we provide a heuristic description of the development of two canonical forms of GQME, namely the time-convoluted Nakajima-Zwanzig form (NZ-GQME) and the time-convolutionless form (TCL-GQME). In the more popular NZ-GQME form, the memory kernel serves as the essential part that reflects the non-Markovian and non-perturbative effects, which gives formally exact dynamics of the reduced density matrix. We summarize several schemes to express the projection-based memory kernel of NZ-GQME in terms of projection-free time correlation function inputs that contain molecular information. In particular, the recently proposed modified GQME approach based on NZ-GQME partitions the Hamiltonian into a more general diagonal and off-diagonal parts. The projection-free inputs in the above-mentioned schemes expressed in terms of different system-dependent time correlation functions can be calculated via numerically exact or approximate dynamical methods. We hope this contribution would help lower the barrier of understanding the theoretical pillars for GQME-based quantum dynamics methods and also envisage that their combination with the quantum computing techniques will pave the way for solving complex problems related to quantum dynamics and quantum information that are currently intractable even with today's state-of-the-art classical supercomputers.
2

Linear-Response and Nonlinear-Response Formulations of the Instantaneous Marcus Theory for Nonequilibrium Photoinduced Charge Transfer

Dominikus Brian et al.Mar 9, 2021
Instantaneous Marcus theory (IMT) offers a way for capturing the time-dependent charge transfer (CT) rate coefficient in nonequilibrium photoinduced CT processes, where the system was photoexcited from its equilibrated ground state vertically to the excitonic state, followed by an electronic transition to the CT state. As derived from the linearized semiclassical nonequilibrium Fermi's golden rule (LSC NE-FGR), the original IMT requires expensive all-atom nonequilibrium molecular dynamics (NEMD) simulations. In this work, we propose computationally efficient linear-response and nonlinear-response formulations for IMT rate calculations, which only require equilibrium molecular dynamics simulations. The linear- and nonlinear-response IMT methods were tested to predict the transient behavior in the photoinduced CT dynamics of the carotenoid–porphyrin–C60 molecular triad solvated in explicit tetrahydrofuran. Our result demonstrated that the nonlinear-response IMT is in excellent agreement with the benchmark NEMD for all cases investigated here, whereas the linear-response IMT predicts the correct trend for all cases but overestimates the transient CT rate in one case involving a significant nonequilibrium relaxation. This mild breakdown of linear-response IMT is due to neglecting the higher-order terms in the exact nonlinear-response IMT. Taking advantage of time translational symmetry, the linear- and nonlinear-response approaches were demonstrated to be able to reduce the computational cost by 80% and 60% compared with NEMD simulations, respectively. Thus, we highly recommend the readily applicable and accurate nonlinear-response IMT approach for simulating nonequilibrium CT processes in complex molecular systems in the condensed phase.
3

Design and development of a coating device: Multiple-droplet drop-casting (MDDC-Alpha)

Dominikus Brian et al.Mar 1, 2020
We report the development of a coating device (multiple-droplet drop-casting), which releases multiple droplets simultaneously or with a short time-lag (&lt;10 ms) using a multi-channel syringe pump to achieve deposition of large-area (up to ∼100 cm2) and patterned coatings. The device exhibits the following features and characteristics: simple, low-cost, and scalable; adaptive to various solution-processed materials; insensitive to small contaminations/impurities; minimizes material waste; and can create patterns (printing). The demonstration of the device performance was carried out by fabricating coatings using four strategic model solutions, namely, carbon nanotube ink, graphene oxide ink, [poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)] PEDOT:PSS solution, and n-methyl-2-pyrrolidone diluted methylammonium lead iodide (CH3NH3PbI3)-based light harvesting perovskite. We investigated the effect of release height (droplet velocity or Weber number) and the film area on the film characteristics. The results show that the device yields reproducible and uniform films on the order of micrometers in thickness and ∼1 μm in roughness.
1

PyCTRAMER: A Python package for charge transfer rate constant of condensed-phase systems from Marcus theory to Fermi’s golden rule

Zengkui Liu et al.Aug 9, 2024
In this work, we introduce PyCTRAMER, a comprehensive Python package designed for calculating charge transfer (CT) rate constants in disordered condensed-phase systems at finite temperatures, such as organic photovoltaic (OPV) materials. PyCTRAMER is a restructured and enriched version of the CTRAMER (Charge-Transfer RAtes from Molecular dynamics, Electronic structure, and Rate theory) package [Tinnin et al. J. Chem. Phys. 154, 214108 (2021)], enabling the computation of the Marcus CT rate constant and the six levels of the linearized semiclassical approximations of Fermi’s golden rule (FGR) rate constant. It supports various types of intramolecular and intermolecular CT transitions from the excitonic states to CT state. Integrating quantum chemistry calculations, all-atom molecular dynamics (MD) simulations, spin-boson model construction, and rate constant calculations, PyCTRAMER offers an automatic workflow for handling photoinduced CT processes in explicit solvent environments and interfacial CT in amorphous donor/acceptor blends. The package also provides versatile tools for individual workflow steps, including electronic state analysis, state-specific force field construction, MD simulations, and spin-boson model construction from energy trajectories. We demonstrate the software’s capabilities through two examples, highlighting both intramolecular and intermolecular CT processes in prototypical OPV systems.
Load More