QW
Qingbo Wang
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
8,198
h-index:
21
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The mutational constraint spectrum quantified from variation in 141,456 humans

Konrad Karczewski et al.May 27, 2020
Abstract Genetic variants that inactivate protein-coding genes are a powerful source of information about the phenotypic consequences of gene disruption: genes that are crucial for the function of an organism will be depleted of such variants in natural populations, whereas non-essential genes will tolerate their accumulation. However, predicted loss-of-function variants are enriched for annotation errors, and tend to be found at extremely low frequencies, so their analysis requires careful variant annotation and very large sample sizes 1 . Here we describe the aggregation of 125,748 exomes and 15,708 genomes from human sequencing studies into the Genome Aggregation Database (gnomAD). We identify 443,769 high-confidence predicted loss-of-function variants in this cohort after filtering for artefacts caused by sequencing and annotation errors. Using an improved model of human mutation rates, we classify human protein-coding genes along a spectrum that represents tolerance to inactivation, validate this classification using data from model organisms and engineered human cells, and show that it can be used to improve the power of gene discovery for both common and rare diseases.
0
Citation7,204
0
Save
0

A structural variation reference for medical and population genetics

Ryan Collins et al.May 27, 2020
Structural variants (SVs) rearrange large segments of DNA1 and can have profound consequences in evolution and human disease2,3. As national biobanks, disease-association studies, and clinical genetic testing have grown increasingly reliant on genome sequencing, population references such as the Genome Aggregation Database (gnomAD)4 have become integral in the interpretation of single-nucleotide variants (SNVs)5. However, there are no reference maps of SVs from high-coverage genome sequencing comparable to those for SNVs. Here we present a reference of sequence-resolved SVs constructed from 14,891 genomes across diverse global populations (54% non-European) in gnomAD. We discovered a rich and complex landscape of 433,371 SVs, from which we estimate that SVs are responsible for 25-29% of all rare protein-truncating events per genome. We found strong correlations between natural selection against damaging SNVs and rare SVs that disrupt or duplicate protein-coding sequence, which suggests that genes that are highly intolerant to loss-of-function are also sensitive to increased dosage6. We also uncovered modest selection against noncoding SVs in cis-regulatory elements, although selection against protein-truncating SVs was stronger than all noncoding effects. Finally, we identified very large (over one megabase), rare SVs in 3.9% of samples, and estimate that 0.13% of individuals may carry an SV that meets the existing criteria for clinically important incidental findings7. This SV resource is freely distributed via the gnomAD browser8 and will have broad utility in population genetics, disease-association studies, and diagnostic screening.
0
Citation722
0
Save
0

Characterising the loss-of-function impact of 5’ untranslated region variants in whole genome sequence data from 15,708 individuals

Leif Groop et al.Feb 7, 2019
Abstract Upstream open reading frames (uORFs) are important tissue-specific cis -regulators of protein translation. Although isolated case reports have shown that variants that create or disrupt uORFs can cause disease, genetic sequencing approaches typically focus on protein-coding regions and ignore these variants. Here, we describe a systematic genome-wide study of variants that create and disrupt human uORFs, and explore their role in human disease using 15,708 whole genome sequences collected by the Genome Aggregation Database (gnomAD) project. We show that 14,897 variants that create new start codons upstream of the canonical coding sequence (CDS), and 2,406 variants disrupting the stop site of existing uORFs, are under strong negative selection. Furthermore, variants creating uORFs that overlap the CDS show signals of selection equivalent to coding loss-of-function variants, and uORF-perturbing variants are under strong selection when arising upstream of known disease genes and genes intolerant to loss-of-function variants. Finally, we identify specific genes where perturbation of uORFs is likely to represent an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in families with neurofibromatosis. Our results highlight uORF-perturbing variants as an important and under-recognised functional class that can contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data to study the deleteriousness of specific classes of non-coding variants.
0
Citation8
0
Save
34

High Resolution Slide-seqV2 Spatial Transcriptomics Enables Discovery of Disease-Specific Cell Neighborhoods and Pathways

Jamie Marshall et al.Oct 10, 2021
Abstract High resolution spatial transcriptomics is a transformative technology that enables mapping of RNA expression directly from intact tissue sections; however, its utility for the elucidation of disease processes and therapeutically actionable pathways remain largely unexplored. Here we applied Slide-seqV2 to mouse and human kidneys, in healthy and in distinct disease paradigms. First, we established the feasibility of Slide-seqV2 in human kidney by analyzing tissue from 9 distinct donors, which revealed a cell neighborhood centered around a population of LYVE1+ macrophages. Second, in a mouse model of diabetic kidney disease, we detected changes in the cellular organization of the spatially-restricted kidney filter and blood flow regulating apparatus. Third, in a mouse model of a toxic proteinopathy, we identified previously unknown, disease-specific cell neighborhoods centered around macrophages. In a spatially-restricted subpopulation of epithelial cells, we also found perturbations in 77 genes associated with the unfolded protein response (UPR). Our studies illustrate and experimentally validate the utility of Slide-seqV2 for the discovery of disease-specific cell neighborhoods. One-Sentence Summary High resolution Slide-seqV2 spatial transcriptomics in human and mouse kidneys.
34
Citation4
0
Save
0

Functional dissection of complex and molecular trait variants at single nucleotide resolution

Layla Siraj et al.May 6, 2024
Identifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types. We show that MPRA is able to discriminate between likely causal variants and controls, identifying 12,025 regulatory variants with high precision. Although the effects of these variants largely agree with orthogonal measures of function, only 69% can plausibly be explained by the disruption of a known transcription factor (TF) binding motif. We dissect the mechanisms of 136 variants using saturation mutagenesis and assign impacted TFs for 91% of variants without a clear canonical mechanism. Finally, we provide evidence that epistasis is prevalent for variants in close proximity and identify multiple functional variants on the same haplotype at a small, but important, subset of trait-associated loci. Overall, our study provides a systematic functional characterization of likely causal common variants underlying complex and molecular human traits, enabling new insights into the regulatory grammar underlying disease risk.
0
Citation1
0
Save
0

Landscape of multi-nucleotide variants in 125,748 human exomes and 15,708 genomes

Qingbo Wang et al.Mar 10, 2019
Multi-nucleotide variants (MNVs), defined as two or more nearby variants existing on the same haplotype in an individual, are a clinically and biologically important class of genetic variation. However, existing tools for variant interpretation typically do not accurately classify MNVs, and understanding of their mutational origins remains limited. Here, we systematically survey MNVs in 125,748 whole exomes and 15,708 whole genomes from the Genome Aggregation Database (gnomAD). We identify 1,996,125 MNVs across the genome with constituent variants falling within 2 bp distance of one another, of which 31,510 exist within the same codon, including 405 predicted to result in gain of a nonsense mutation, 1,818 predicted to rescue a nonsense mutation event that would otherwise be caused by one of the constituent variants, and 16,481 additional variants predicted to alter protein sequences. We show that the distribution of MNVs is highly non-uniform across the genome, and that this non-uniformity can be largely explained by a variety of known mutational mechanisms, such as CpG deamination, replication error by polymerase zeta, or polymerase slippage at repeat junctions. We also provide an estimate of the dinucleotide mutation rate caused by polymerase zeta. Finally, we show that differential CpG methylation drives MNV differences across functional categories. Our results demonstrate the importance of incorporating haplotype-aware annotation for accurate functional interpretation of genetic variation, and refine our understanding of genome-wide mutational mechanisms of MNVs.
290

A genome-wide mutational constraint map quantified from variation in 76,156 human genomes

Siwei Chen et al.Mar 21, 2022
Abstract The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders, but attempts to assess constraint for non-protein-coding regions have proven more difficult. Here we aggregate, process, and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD), the largest public open-access human genome reference dataset, and use this dataset to build a mutational constraint map for the whole genome. We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation across the genome. As expected, proteincoding sequences overall are under stronger constraint than non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association, and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, while non-coding constraint captures additional functional information underrecognized by gene constraint metrics. We demonstrate that this genome-wide constraint map provides an effective approach for characterizing the non-coding genome and improving the identification and interpretation of functional human genetic variation.
115

HyPR-seq: Single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes

Jamie Marshall et al.Jun 2, 2020
ABSTRACT Single-cell quantification of RNAs is important for understanding cellular heterogeneity and gene regulation, yet current approaches suffer from low sensitivity for individual transcripts, limiting their utility for many applications. Here we present Hybridization of Probes to RNA for sequencing (HyPR-seq), a method to sensitively quantify the expression of up to 100 chosen genes in single cells. HyPR-seq involves hybridizing DNA probes to RNA, distributing cells into nanoliter droplets, amplifying the probes with PCR, and sequencing the amplicons to quantify the expression of chosen genes. HyPR-seq achieves high sensitivity for individual transcripts, detects nonpolyadenylated and low-abundance transcripts, and can profile more than 100,000 single cells. We demonstrate how HyPR-seq can profile the effects of CRISPR perturbations in pooled screens, detect time-resolved changes in gene expression via measurements of gene introns, and detect rare transcripts and quantify cell type frequencies in tissue using low-abundance marker genes. By directing sequencing power to genes of interest and sensitively quantifying individual transcripts, HyPR-seq reduces costs by up to 100-fold compared to whole-transcriptome scRNA-seq, making HyPR-seq a powerful method for targeted RNA profiling in single cells.
Load More