DH
David Haussler
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
143
(80% Open Access)
Cited by:
94,077
h-index:
170
/
i10-index:
394
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GENCODE: The reference human genome annotation for The ENCODE Project

Jennifer Harrow et al.Sep 1, 2012
The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
0
Citation4,501
0
Save
0

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes

Adam Siepel et al.Jul 15, 2005
We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes ). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae ), two species of Caenorhabditis , and seven species of Saccharomyces . Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%–8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%–53%), Caenorhabditis elegans (18%–37%), and Saccharaomyces cerevisiae (47%–68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3′ UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.
0
Citation3,838
0
Save
0

Support vector machine classification and validation of cancer tissue samples using microarray expression data

Terrence Furey et al.Oct 1, 2000
DNA microarray experiments generating thousands of gene expression measurements, are being used to gather information from tissue and cell samples regarding gene expression differences that will be useful in diagnosing disease. We have developed a new method to analyse this kind of data using support vector machines (SVMs). This analysis consists of both classification of the tissue samples, and an exploration of the data for mis-labeled or questionable tissue results.We demonstrate the method in detail on samples consisting of ovarian cancer tissues, normal ovarian tissues, and other normal tissues. The dataset consists of expression experiment results for 97,802 cDNAs for each tissue. As a result of computational analysis, a tissue sample is discovered and confirmed to be wrongly labeled. Upon correction of this mistake and the removal of an outlier, perfect classification of tissues is achieved, but not with high confidence. We identify and analyse a subset of genes from the ovarian dataset whose expression is highly differentiated between the types of tissues. To show robustness of the SVM method, two previously published datasets from other types of tissues or cells are analysed. The results are comparable to those previously obtained. We show that other machine learning methods also perform comparably to the SVM on many of those datasets.The SVM software is available at http://www.cs. columbia.edu/ approximately bgrundy/svm.
0
Citation2,430
0
Save
0

Knowledge-based analysis of microarray gene expression data by using support vector machines

Michael Brown et al.Jan 4, 2000
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.
0

Hidden Markov Models in Computational Biology

Anders Krogh et al.Feb 1, 1994
Hidden Markov Models (HMMs) are applied to the problems of statistical modeling, database searching and multiple sequence alignment of protein families and protein domains. These methods are demonstrated on the globin family, the protein kinase catalytic domain, and the EF-hand calcium binding motif. In each case the parameters of an HMM are estimated from a training set of unaligned sequences. After the HMM is built, it is used to obtain a multiple alignment of all the training sequences. It is also used to search the SWISS-PROT 22 database for other sequences that are members of the given protein family, or contain the given domain. The HMM produces multiple alignments of good quality that agree closely with the alignments produced by programs that incorporate three-dimensional structural information. When employed in discrimination tests (by examining how closely the sequences in a database fit the globin, kinase and EF-hand HMMs), the HMM is able to distinguish members of these families from non-members with a high degree of accuracy. Both the HMM and PROFILESEARCH (a technique used to search for relationships between a protein sequence and multiply aligned sequences) perform better in these tests than PROSITE (a dictionary of sites and patterns in proteins). The HMM appears to have a slight advantage over PROFILESEARCH in terms of lower rates of false negatives and false positives, even though the HMM is trained using only unaligned sequences, whereas PROFILESEARCH requires aligned training sequences. Our results suggest the presence of an EF-hand calcium binding motif in a highly conserved and evolutionary preserved putative intracellular region of 155 residues in the α-1 subunit of L-type calcium channels which play an important role in excitation-contraction coupling. This region has been suggested to contain the functional domains that are typical or essential for all L-type calcium channels regardless of whether they couple to ryanodine receptors, conduct ions or both.
0
Citation1,942
0
Save
Load More