IS
Ilkka Seppälä
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(36% Open Access)
Cited by:
3,425
h-index:
57
/
i10-index:
172
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Integrative approaches for large-scale transcriptome-wide association studies

Alexander Gusev et al.Feb 8, 2016
Alexander Gusev, Bogdan Pasaniuc and colleagues present a strategy that integrates gene expression measurements with summary statistics from large-scale genome-wide association studies to identify genes whose cis-regulated expression is associated with complex traits. They identify 69 new genes significantly associated with obesity-related traits and illustrate how this approach can provide insights into the genetic basis of complex traits. Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance of one or multiple proteins. Here we introduce a powerful strategy that integrates gene expression measurements with summary association statistics from large-scale genome-wide association studies (GWAS) to identify genes whose cis-regulated expression is associated with complex traits. We leverage expression imputation from genetic data to perform a transcriptome-wide association study (TWAS) to identify significant expression-trait associations. We applied our approaches to expression data from blood and adipose tissue measured in ∼3,000 individuals overall. We imputed gene expression into GWAS data from over 900,000 phenotype measurements to identify 69 new genes significantly associated with obesity-related traits (BMI, lipids and height). Many of these genes are associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits.
1
Citation1,875
0
Save
0

Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression

Urmo Võsa et al.Sep 1, 2021
Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes. Analyses of expression profiles from whole blood of 31,684 individuals identify cis-expression quantitative trait loci (eQTL) effects for 88% of genes and trans-eQTL effects for 37% of trait-associated variants.
0
Citation851
0
Save
0

Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits

Eleonora Porcu et al.Jul 24, 2019
Abstract Genome-wide association studies (GWAS) have identified thousands of variants associated with complex traits, but their biological interpretation often remains unclear. Most of these variants overlap with expression QTLs, indicating their potential involvement in regulation of gene expression. Here, we propose a transcriptome-wide summary statistics-based Mendelian Randomization approach (TWMR) that uses multiple SNPs as instruments and multiple gene expression traits as exposures, simultaneously. Applied to 43 human phenotypes, it uncovers 3,913 putatively causal gene–trait associations, 36% of which have no genome-wide significant SNP nearby in previous GWAS. Using independent association summary statistics, we find that the majority of these loci were missed by GWAS due to power issues. Noteworthy among these links is educational attainment-associated BSCL2 , known to carry mutations leading to a Mendelian form of encephalopathy. We also find pleiotropic causal effects suggestive of mechanistic connections. TWMR better accounts for pleiotropy and has the potential to identify biological mechanisms underlying complex traits.
0
Citation240
0
Save
0

Integrative approaches for large-scale transcriptome-wide association studies

Alexander Gusev et al.Aug 7, 2015
Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. In this work we introduce a powerful strategy that integrates gene expression measurements with large-scale genome-wide association data to identify genes whose cis-regulated expression is associated to complex traits. We use a relatively small reference panel of individuals for which both genetic variation and gene expression have been measured to impute gene expression into large cohorts of individuals and identify expression-trait associations. We extend our methods to allow for indirect imputation of the expression-trait association from summary association statistics of large-scale GWAS1-3. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We then imputed gene expression into GWAS data from over 900,000 phenotype measurements4-6 to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes were associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Overall our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits.
0

Genetic and environmental perturbations lead to regulatory decoherence

Amanda Lea et al.Jul 14, 2018
Correlation among traits is a fundamental feature of biological systems. From morphological characters, to transcriptional or metabolic networks, the correlations we routinely observe between traits reflect a shared regulation that remains poorly understood and difficult to study. To address this problem, we developed a new and flexible approach that allows us to identify factors associated with variation in correlation between individuals. Here, we use data from three large human cohorts to study the effects of genetic variation and environmental perturbation on correlations among mRNA transcripts and among NMR metabolites. We first show that environmental exposures (namely, infection and disease) lead to a systematic loss of correlation, which we define as 'decoherence'. Using longitudinal data, we show that decoherent metabolites are better predictors of whether someone will develop metabolic syndrome than metabolites commonly used as biomarkers of this disease. Finally, we show that correlation itself is a trait under genetic control: specifically, we mapped and replicated hundreds of 'correlation QTLs', which often involve transcription factors or their known target genes. Together, this work furthers our understanding of how and why coordinated biological processes break down, and highlights the role of decoherence in disease emergence.
0

Genetic Association Study of Childhood Aggression across raters, instruments and age

Hill Ip et al.Nov 29, 2019
Background: Human aggressive behavior (AGG) has a substantial genetic component. Here we present a large genome-wide association meta-analysis (GWAMA) of childhood AGG. Methods: We analyzed assessments of AGG for a total of 328,935 observations from 87,485 children (aged 1.5 - 18 years), from multiple assessors, instruments, and ages, while accounting for sample overlap. We performed an overall analysis and meta-analyzed subsets of the data within rater, instrument, and age. Results: Heritability based on the overall meta-analysis (AGGall) that could be attributed to Single Nucleotide Polymorphisms (SNPs) was 3.31% (SE=0.0038). No single SNP reached genome-wide significance, but gene-based analysis returned three significant genes: ST3GAL3 (P=1.6E-06), PCDH7 (P=2.0E-06) and IPO13 (P=2.5E-06). All three genes have previously been associated with educational traits. Polygenic scores based on our GWAMA significantly predicted aggression in a holdout sample of children and in retrospectively assessed childhood aggression. We obtained moderate-to-strong genetic correlations (r\_g's) with selected phenotypes from multiple domains, but hardly with any of the classical biomarkers thought to be associated with AGG. Significant genetic correlations were observed with most psychiatric and psychological traits (range.|r\_g |:.0.19 - 1.00), except for obsessive-compulsive disorder. Aggression had a negative genetic correlation (r\_g=~-0.5) with cognitive traits and age at first birth. Aggression was strongly genetically correlated with smoking phenotypes (range.|r\_g |:.0.46 - 0.60). Genetic correlations between AGG and psychiatric disorders were strongest for mother- and self-reported AGG. Conclusions: The current GWAMA of childhood aggression provides a powerful tool to interrogate the genetic etiology of AGG by creating individual polygenic scores and genetic correlations with psychiatric traits.### Competing Interest StatementMiquel Casas has received travel grants and research support from Eli Lilly and Co., Janssen-Cilag, Shire and Lundbeck and served as consultant for Eli Lilly and Co., Janssen-Cilag, Shire and Lundbeck. Josep Antoni Ramos Quiroga was on the speakers’ bureau and/or acted as consultant Eli-Lilly, Janssen-Cilag, Novartis, Shire, Lundbeck, Almirall, Braingaze, Sincrolab, Medicine, Exeltis and Rubió in the last 5 years. He also received travel awards (air tickets + hotel) for taking part in psychiatric meetings from Janssen-Cilag, Rubió, Shire, Medice and Eli-Lilly. The Department of Psychiatry chaired by him received unrestricted educational and research support from the following companies in the last 5 years: Eli-Lilly, Lundbeck, Janssen-Cilag, Actelion, Shire, Ferrer, Oryzon, Roche, Psious, and Rubió.
0

Systems medicine links microbial inflammatory response with glycoprotein-associated mortality risk

Scott Ritchie et al.Apr 28, 2015
Integrative analyses of high-throughput omics data have elucidated the aetiology and pathogenesis for complex traits and diseases, and the linking of omics information to electronic health records promises new insights into human health and disease. Recent nuclear magnetic resonance (NMR) spectroscopy biomarker profiling has implicated glycoprotein acetyls (GlycA) as a biomarker for cardiovascular risk and all-cause mortality. To elucidate biological processes contributing to GlycA- associated mortality risk, we leveraged human omics data from three population- based cohorts together with nation-wide Finnish hospital and mortality records. Elevated GlycA was associated with myriad infection-related inflammatory processes. Within individuals, elevated GlycA levels were stable over long time periods, up to a decade, and chronically elevated GlycA was also associated with modest elevation of numerous cytokines. Individuals with elevated GlycA also showed increased expression of a transcriptional sub-network, the Neutrophil Degranulation Module (NDM), suggesting an increased activity of microbe-driven immune response. Subsequent analysis of nation-wide hospitalisation and death records was consistent with a microbial basis for GlycA-associated mortality, with each standard deviation increase in GlycA raising an individual's future risk of hospitalization and death from non-localized infection by 40% and 136%, respectively. These results show that, beyond its established role in acute-phase response, elevated GlycA is more broadly a biomarker for low-grade chronic inflammation and increased neutrophil activity. Further, increased risk of susceptibility to severe microbial-infection events in healthy individuals suggests this inflammation is a contributor to mortality risk. Taken together, this study demonstrates the power of an integrative approach that combines omics data and health records to delineate the biological processes underlying a newly discovered biomarker, providing a model strategy for future systems medicine studies.
0

An epigenome-wide association study of educational attainment (n = 10,767)

Richard Linnér et al.Mar 7, 2017
Abstract The epigenome has been shown to be influenced by biological factors, such as disease status, and environmental factors, such as smoking, alcohol consumption, and body mass index. Although there is a widespread perception that environmental influences on the epigenome are pervasive and profound, there has been little evidence to date in humans with respect to environmental factors that are biologically distal. Here, we provide evidence on the associations between epigenetic modifications—in our case, CpG methylation—and educational attainment (EA), a biologically distal environmental factor that is arguably among of the most important life-shaping experiences for individuals. Specifically, we report the results of an epigenome-wide association study meta-analysis of EA based on data from 27 cohort studies with a total of 10,767 individuals. While we find that 9 CpG probes are significantly associated with EA, only two remain associated when we restrict the sample to never-smokers. These two are known to be strongly associated with maternal smoking during pregnancy, and thus their association with EA could be due to correlation between EA and maternal smoking. Moreover, their effect sizes on EA are far smaller than the known associations between CpG probes and biologically proximal environmental factors. Two analyses that combine the effects of many probes—polygenic methylation score and epigenetic-clock analyses—both suggest small associations with EA. If our findings regarding EA can be generalized to other biologically distal environmental factors, then they cast doubt on the hypothesis that such factors have large effects on the epigenome.
Load More