TM
Tobias Marschall
Author with expertise in RNA Sequencing Data Analysis
Heinrich Heine University Düsseldorf, Düsseldorf University Hospital, Zimmer Biomet (Netherlands)
+ 11 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
53
(55% Open Access)
Cited by:
1,581
h-index:
47
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
195

The complete sequence of a human genome

Sergey Nurk et al.Apr 1, 2022
+97
A
S
S
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
195
Citation1,417
3
Save
180

Pangenome Graph Construction from Genome Alignment with Minigraph-Cactus

Glenn Hickey et al.Oct 24, 2023
+6
J
J
G
Abstract Reference genomes provide mapping targets and coordinate systems but introduce biases when samples under study diverge sufficiently from them. Pangenome references seek to address this by storing a representative set of diverse haplotypes and their alignment, usually as a graph. Alternate alleles determined by variant callers can be used to construct pangenome graphs, but thanks to advances in long-read sequencing, high-quality phased assemblies are becoming widely available. Constructing a pangenome graph directly from assemblies, as opposed to variant calls, leverages the graph’s ability to consistently represent variation at different scales and reduces biases introduced by reference-based variant calls. Pangenome construction in this way is equivalent to multiple genome alignment. Here we present the Minigraph-Cactus pangenome pipeline, a method to create pangenomes directly from whole-genome alignments, and demonstrate its ability to scale to 90 human haplotypes from the Human Pangenome Reference Consortium (HPRC). This tool was designed to build graphs containing all forms of genetic variation while still being practical for use with current mapping and genotyping tools. We show that this graph is useful both for studying variation within the input haplotypes, but also as a basis for achieving state of the art performance in short and long read mapping, small variant calling and structural variant genotyping. We further measure the effect of the quality and completeness of reference genomes used for analysis within the pangenomes, and show that using the CHM13 reference from the Telomere-to-Telomere Consortium improves the accuracy of our methods, even after projecting back to GRCh38. We also demonstrate that our method can apply to nonhuman data by showing improved mapping and variant detection sensitivity with a Drosophila melanogaster pangenome.
180
Citation22
0
Save
9

A multi-platform reference for somatic structural variation detection

Jose Valle-Inclán et al.Oct 24, 2023
+16
E
N
J
Abstract Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality gold standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines for comprehensive somatic SV detection. Here, we approached this challenge by genome-wide somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different technologies: Illumina HiSeq, Oxford Nanopore, Pacific Biosciences and 10x Genomics. Based on the evidence from multiple technologies combined with extensive experimental validation, including Bionano optical mapping data and targeted detection of candidate breakpoint junctions, we compiled a comprehensive set of true somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance of each technology as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects and data analysis tool evaluation. The reference truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.
9
Citation11
0
Save
69

Haplotype-resolved inversion landscape reveals hotspots of mutational recurrence associated with genomic disorders

David Porubský et al.Oct 24, 2023
+22
H
W
D
Abstract Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1-retrotransposition; 80% of the larger inversions are balanced and affect twice as many base pairs as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or mobile elements. Since this suggests recurrence due to non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7×10 -4 per locus and generation. Recurrent inversions exhibit a sex- chromosomal bias, and significantly co-localize to the critical regions of genomic disorders. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes to disease- causing CNVs.
69
Citation10
0
Save
0

A Diploid Assembly-based Benchmark for Variants in the Major Histocompatibility Complex

Chen-Shan Chin et al.May 7, 2020
+7
Q
J
C
Abstract We develop the first human benchmark derived from a diploid assembly for the openly-consented Genome in a Bottle/Personal Genome Project Ashkenazi son (HG002). As a proof-of-principle, we focus on a medically important, highly variable, 5 million base-pair region - the Major Histocompatibility Complex (MHC). Most human genomes are characterized by aligning individual reads to the reference genome, but accurate long reads and linked reads now enable us to construct base-level accurate, phased de novo assemblies from the reads. We assemble a single haplotig (haplotype-specific contig) for each haplotype, and align reads back to each assembled haplotig to identify two regions of lower confidence. We align the haplotigs to the reference, call phased small and structural variants, and define the first small variant benchmark for the MHC, covering 21496 small variants in 4.58 million base-pairs (92 % of the MHC). The assembly-based benchmark is 99.95 % concordant with a draft mapping-based benchmark from the same long and linked reads within both benchmark regions, but covers 50 % more variants outside the mapping-based benchmark regions. The haplotigs and variant calls are completely concordant with phased clinical HLA types for HG002. This benchmark reliably identifies false positives and false negatives from mapping-based callsets, and enables performance assessment in regions with much denser, complex variation than regions covered by previous benchmarks. These methods demonstrate a path towards future diploid assembly-based benchmarks for other complex regions of the genome.
43

Gaps and complex structurally variant loci in phased genome assemblies

David Porubský et al.Oct 24, 2023
+10
W
M
D
ABSTRACT There has been tremendous progress in the production of phased genome assemblies by combining long-read data with parental information or linking read data. Nevertheless, a typical phased genome assembly generated by trio-hifiasm still generates more than ~140 gaps. We perform a detailed analysis of gaps, assembly breaks, and misorientations from 77 phased and assembled human genomes (154 unique haplotypes). We find that trio-based approaches using HiFi are the current gold standard although chromosome-wide phasing accuracy is comparable when using Strand-seq instead of parental data. We find two-thirds of defined contig ends cluster near the largest and most identical repeats [including segmental duplications (35.4%) or satellite DNA (22.3%) or to regions enriched in GA/AT rich DNA (27.4%)]. As a result, 1513 protein-coding genes overlap assembly gaps in at least one haplotype and 231 are recurrently disrupted or missing from five or more haplotypes. In addition, we estimate that 6-7 Mbp of DNA are incorrectly orientated per haplotype irrespective of whether trio-free or trio-based approaches are employed. 81% of such misorientations correspond to bona fide large inversion polymorphisms in the human species, most of which are flanked by large identical segmental duplications. In addition, we also identify large-scale alignment discontinuities consistent with an 11.9 Mbp deletion and 161.4 Mbp of insertion per human haploid genome. While 99% of this variation corresponds to satellite DNA, we identify 230 regions of the euchromatic DNA with frequent expansions and contractions, nearly half of which overlap with 197 protein-coding genes. Although not completely resolved, these regions include copy number polymorphic and biomedically relevant genic regions where complete resolution and a pangenome representation will be most useful, yet most challenging, to realize.
43
Paper
Citation5
0
Save
0

MBG: Minimizer-based Sparse de Bruijn Graph Construction

Mikko Rautiainen et al.May 30, 2024
T
M
Motivation De Bruijn graphs can be constructed from short reads efficiently and have been used for many purposes. Traditionally long read sequencing technologies have had too high error rates for de Bruijn graph-based methods. Recently, HiFi reads have provided a combination of long read length and low error rate, which enables de Bruijn graphs to be used with HiFi reads. Results We have implemented MBG, a tool for building sparse de Bruijn graphs from HiFi reads. MBG outperforms existing tools for building dense de Bruijn graphs, and can build a graph of 50x coverage whole human genome HiFi reads in four hours on a single core. MBG also assembles the bacterial E. coli genome into a single contig in 8 seconds. Availability Package manager: https://anaconda.org/bioconda/mbg and source code: https://github.com/maickrau/MBG
76

Expectations and blind spots for structural variation detection from short-read alignment and long-read assembly

Xuefang Zhao et al.Oct 24, 2023
+20
W
R
X
Abstract Virtually all genome sequencing efforts in national biobanks, complex and Mendelian disease programs, and emerging clinical diagnostic approaches utilize short-reads (srWGS), which present constraints for genome-wide discovery of structural variants (SVs). Alternative long-read single molecule technologies (lrWGS) offer significant advantages for genome assembly and SV detection, while these technologies are currently cost prohibitive for large-scale disease studies and clinical diagnostics (∼5-12X higher cost than comparable coverage srWGS). Moreover, only dozens of such genomes are currently publicly accessible by comparison to millions of srWGS genomes that have been commissioned for international initiatives. Given this ubiquitous reliance on srWGS in human genetics and genomics, we sought to characterize and quantify the properties of SVs accessible to both srWGS and lrWGS to establish benchmarks and expectations in ongoing medical and population genetic studies, and to project the added value of SVs uniquely accessible to each technology. In analyses of three trios with matched srWGS and lrWGS from the Human Genome Structural Variation Consortium (HGSVC), srWGS captured ∼11,000 SVs per genome using reference-based algorithms, while haplotype-resolved assembly from lrWGS identified ∼25,000 SVs per genome. Detection power and precision for SV discovery varied dramatically by genomic context and variant class: 9.7% of the current GRCh38 reference is defined by segmental duplications (SD) and simple repeats (SR), yet 91.4% of deletions that were specifically discovered by lrWGS localized to these regions. Across the remaining 90.3% of the human reference, we observed extremely high concordance (93.8%) for deletions discovered by srWGS and lrWGS after error correction using the raw lrWGS reads. Conversely, lrWGS was superior for detection of insertions across all genomic contexts. Given that the non-SD/SR sequences span 90.3% of the GRCh38 reference, and encompass 95.9% of coding exons in currently annotated disease associated genes, improved sensitivity from lrWGS to discover novel and interpretable pathogenic deletions not already accessible to srWGS is likely to be incremental. However, these analyses highlight the added value of assembly-based lrWGS to create new catalogues of functional insertions and transposable elements, as well as disease associated repeat expansions in genomic regions previously recalcitrant to routine assessment.
1

Inversion polymorphism in a complete human genome assembly

David Porubský et al.Oct 24, 2023
+9
A
W
D
Abstract The completion of the human genome significantly improved our ability to discover and interpret genome copy number variation. In order to understand its impact on the characterization of inversion polymorphisms, we remapped data from 41 human genomes and 10 new samples against the telomere-to-telomere (T2T) reference genome as compared to the standard GRCh38 reference. Our analysis shows a ~21% increase in sensitivity identifying and improving mapping of 63 inversions. We further identify 26 misorientations within GRCh38, and show that the T2T reference is three times more likely to represent the correct orientation of the major human allele. As a result, we report a significant bias for inversions accumulating within the pericentromeric regions of specific chromosomes and show that functional annotations around inverted regions, such as topological-associated domains, can be better interpreted.
1
Paper
Citation3
0
Save
1

Haplotype-aware single-cell multiomics uncovers functional effects of somatic structural variation

Hyobin Jeong et al.Oct 24, 2023
+15
P
K
H
Abstract Somatic structural variants (SVs) are widespread in cancer genomes, however, their impact on tumorigenesis and intra-tumour heterogeneity is incompletely understood, since methods to functionally characterize the broad spectrum of SVs arising in cancerous single-cells are lacking. We present a computational method, scNOVA, that couples SV discovery with nucleosome occupancy analysis by haplotype-resolved single-cell sequencing, to systematically uncover SV effects on cis -regulatory elements and gene activity. Application to leukemias and cell lines uncovered SV outcomes at several loci, including dysregulated cancer-related pathways and mono-allelic oncogene expression near SV breakpoints. At the intra-patient level, we identified different yet overlapping subclonal SVs that converge on aberrant Wnt signaling. We also deconvoluted the effects of catastrophic chromosomal rearrangements resulting in oncogenic transcription factor dysregulation. scNOVA directly links SVs to their functional consequences, opening the door for single-cell multiomics of SVs in heterogeneous cell populations.
1
Paper
Citation3
0
Save
Load More