FG
Florence Guivel‐Benhassine
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(94% Open Access)
Cited by:
6,030
h-index:
34
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization

Delphine Planas et al.Jul 8, 2021
+26
A
D
D
The SARS-CoV-2 B.1.617 lineage was identified in October 2020 in India1–5. Since then, it has become dominant in some regions of India and in the UK, and has spread to many other countries6. The lineage includes three main subtypes (B1.617.1, B.1.617.2 and B.1.617.3), which contain diverse mutations in the N-terminal domain (NTD) and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein that may increase the immune evasion potential of these variants. B.1.617.2—also termed the Delta variant—is believed to spread faster than other variants. Here we isolated an infectious strain of the Delta variant from an individual with COVID-19 who had returned to France from India. We examined the sensitivity of this strain to monoclonal antibodies and to antibodies present in sera from individuals who had recovered from COVID-19 (hereafter referred to as convalescent individuals) or who had received a COVID-19 vaccine, and then compared this strain with other strains of SARS-CoV-2. The Delta variant was resistant to neutralization by some anti-NTD and anti-RBD monoclonal antibodies, including bamlanivimab, and these antibodies showed impaired binding to the spike protein. Sera collected from convalescent individuals up to 12 months after the onset of symptoms were fourfold less potent against the Delta variant relative to the Alpha variant (B.1.1.7). Sera from individuals who had received one dose of the Pfizer or the AstraZeneca vaccine had a barely discernible inhibitory effect on the Delta variant. Administration of two doses of the vaccine generated a neutralizing response in 95% of individuals, with titres three- to fivefold lower against the Delta variant than against the Alpha variant. Thus, the spread of the Delta variant is associated with an escape from antibodies that target non-RBD and RBD epitopes of the spike protein. The SARS-CoV-2 Delta variant partially evades neutralization by several monoclonal antibodies and by sera from individuals who have had COVID-19, but two doses of anti-COVID-19 vaccines still generate a strong neutralizing response.
0
Citation1,942
0
Save
0

Considerable escape of SARS-CoV-2 Omicron to antibody neutralization

Delphine Planas et al.Dec 23, 2021
+29
P
N
D
The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa1–3. It has since spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of around 32 mutations in spike—located mostly in the N-terminal domain and the receptor-binding domain—that may enhance viral fitness and enable antibody evasion. Here we isolated an infectious Omicron virus in Belgium from a traveller returning from Egypt. We examined its sensitivity to nine monoclonal antibodies that have been clinically approved or are in development4, and to antibodies present in 115 serum samples from COVID-19 vaccine recipients or individuals who have recovered from COVID-19. Omicron was completely or partially resistant to neutralization by all monoclonal antibodies tested. Sera from recipients of the Pfizer or AstraZeneca vaccine, sampled five months after complete vaccination, barely inhibited Omicron. Sera from COVID-19-convalescent patients collected 6 or 12 months after symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titres 6-fold to 23-fold lower against Omicron compared with those against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and, to a large extent, vaccine-elicited antibodies. However, Omicron is neutralized by antibodies generated by a booster vaccine dose. An isolate of the Omicron variant of SARS-COV-2 was completely or partially resistant to neutralization by all nine clinically approved monoclonal antibodies tested.
1

Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies

Delphine Planas et al.Mar 26, 2021
+30
L
F
D
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.7 and B.1.351 variants were first identified in the United Kingdom and South Africa, respectively, and have since spread to many countries. These variants harboring diverse mutations in the gene encoding the spike protein raise important concerns about their immune evasion potential. Here, we isolated infectious B.1.1.7 and B.1.351 strains from acutely infected individuals. We examined sensitivity of the two variants to SARS-CoV-2 antibodies present in sera and nasal swabs from individuals infected with previously circulating strains or who were recently vaccinated, in comparison with a D614G reference virus. We utilized a new rapid neutralization assay, based on reporter cells that become positive for GFP after overnight infection. Sera from 58 convalescent individuals collected up to 9 months after symptoms, similarly neutralized B.1.1.7 and D614G. In contrast, after 9 months, convalescent sera had a mean sixfold reduction in neutralizing titers, and 40% of the samples lacked any activity against B.1.351. Sera from 19 individuals vaccinated twice with Pfizer Cominarty, longitudinally tested up to 6 weeks after vaccination, were similarly potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Neutralizing titers increased after the second vaccine dose, but remained 14-fold lower against B.1.351. In contrast, sera from convalescent or vaccinated individuals similarly bound the three spike proteins in a flow cytometry-based serological assay. Neutralizing antibodies were rarely detected in nasal swabs from vaccinees. Thus, faster-spreading SARS-CoV-2 variants acquired a partial resistance to neutralizing antibodies generated by natural infection or vaccination, which was most frequently detected in individuals with low antibody levels. Our results indicate that B1.351, but not B.1.1.7, may increase the risk of infection in immunized individuals.
1
Citation712
0
Save
0

A Mouse Model for Chikungunya: Young Age and Inefficient Type-I Interferon Signaling Are Risk Factors for Severe Disease

Thérèse Couderc et al.Feb 11, 2008
+12
N
G
T
Chikungunya virus (CHIKV) is a re-emerging arbovirus responsible for a massive outbreak currently afflicting the Indian Ocean region and India. Infection from CHIKV typically induces a mild disease in humans, characterized by fever, myalgia, arthralgia, and rash. Cases of severe CHIKV infection involving the central nervous system (CNS) have recently been described in neonates as well as in adults with underlying conditions. The pathophysiology of CHIKV infection and the basis for disease severity are unknown. To address these critical issues, we have developed an animal model of CHIKV infection. We show here that whereas wild type (WT) adult mice are resistant to CHIKV infection, WT mouse neonates are susceptible and neonatal disease severity is age-dependent. Adult mice with a partially (IFN-α/βR+/−) or totally (IFN-α/βR−/−) abrogated type-I IFN pathway develop a mild or severe infection, respectively. In mice with a mild infection, after a burst of viral replication in the liver, CHIKV primarily targets muscle, joint, and skin fibroblasts, a cell and tissue tropism similar to that observed in biopsy samples of CHIKV-infected humans. In case of severe infections, CHIKV also disseminates to other tissues including the CNS, where it specifically targets the choroid plexuses and the leptomeninges. Together, these data indicate that CHIKV-associated symptoms match viral tissue and cell tropisms, and demonstrate that the fibroblast is a predominant target cell of CHIKV. These data also identify the neonatal phase and inefficient type-I IFN signaling as risk factors for severe CHIKV-associated disease. The development of a permissive small animal model will expedite the testing of future vaccines and therapeutic candidates.
0
Citation555
0
Save
0

Characterization of Reemerging Chikungunya Virus

Marion Sourisseau et al.Jun 27, 2007
+24
S
M
M
An unprecedented epidemic of chikungunya virus (CHIKV) infection recently started in countries of the Indian Ocean area, causing an acute and painful syndrome with strong fever, asthenia, skin rash, polyarthritis, and lethal cases of encephalitis. The basis for chikungunya disease and the tropism of CHIKV remain unknown. Here, we describe the replication characteristics of recent clinical CHIKV strains. Human epithelial and endothelial cells, primary fibroblasts and, to a lesser extent, monocyte-derived macrophages, were susceptible to infection and allowed viral production. In contrast, CHIKV did not replicate in lymphoid and monocytoid cell lines, primary lymphocytes and monocytes, or monocyte-derived dendritic cells. CHIKV replication was cytopathic and associated with an induction of apoptosis in infected cells. Chloroquine, bafilomycin-A1, and short hairpin RNAs against dynamin-2 inhibited viral production, indicating that viral entry occurs through pH-dependent endocytosis. CHIKV was highly sensitive to the antiviral activity of type I and II interferons. These results provide a general insight into the interaction between CHIKV and its mammalian host.
0
Citation461
0
Save
0

The TIM and TAM Families of Phosphatidylserine Receptors Mediate Dengue Virus Entry

Laurent Meertens et al.Oct 1, 2012
+6
E
F
L
Dengue viruses (DVs) are responsible for the most medically relevant arboviral diseases. However, the molecular interactions mediating DV entry are poorly understood. We determined that TIM and TAM proteins, two receptor families that mediate the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, serve as DV entry factors. Cells poorly susceptible to DV are robustly infected after ectopic expression of TIM or TAM receptors. Conversely, DV infection of susceptible cells is inhibited by anti-TIM or anti-TAM antibodies or knockdown of TIM and TAM expression. TIM receptors facilitate DV entry by directly interacting with virion-associated PtdSer. TAM-mediated infection relies on indirect DV recognition, in which the TAM ligand Gas6 acts as a bridging molecule by binding to PtdSer within the virion. This dual mode of virus recognition by TIM and TAM receptors reveals how DVs usurp the apoptotic cell clearance pathway for infectious entry.
0
Citation446
0
Save
1

Syncytia formation by SARS‐CoV‐2‐infected cells

Julian Buchrieser et al.Oct 14, 2020
+11
M
J
J
Severe cases of COVID‐19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS‐CoV‐2‐infected cells express the Spike protein (S) at their surface and fuse with ACE2‐positive neighboring cells. Expression of S without any other viral proteins triggers syncytia formation. Interferon‐induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S‐mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell‐free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that SARS‐CoV‐2 pathological effects are modulated by cellular proteins that either inhibit or facilitate syncytia formation.
1
Citation417
0
Save
258

Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies

Delphine Planas et al.Feb 12, 2021
+25
S
S
D
Abstract SARS-CoV-2 B.1.1.7 and B.1.351 variants emerged respectively in United Kingdom and South Africa and spread in many countries. Here, we isolated infectious B.1.1.7 and B.1.351 strains and examined their sensitivity to anti-SARS-CoV-2 antibodies present in sera and nasal swabs, in comparison with a D614G reference virus. We established a novel rapid neutralization assay, based on reporter cells that become GFP+ after overnight infection. B.1.1.7 was neutralized by 79/83 sera from convalescent patients collected up to 9 months post symptoms, almost similar to D614G. There was a mean 6-fold reduction in titers and even loss of activity against B.1.351 in 40% of convalescent sera after 9 months. Early sera from 19 vaccinated individuals were almost as potent against B.1.1.7 but less efficacious against B.1.351, when compared to D614G. Nasal swabs from vaccine recipients were not neutralizing, except in individuals who were diagnosed COVID-19+ before vaccination. Thus, faster-spreading variants acquired a partial resistance to humoral immunity generated by natural infection or vaccination, mostly visible in individuals with low antibody levels.
258
Citation47
0
Save
728

Resistance of Omicron subvariants BA.2.75.2, BA.4.6 and BQ.1.1 to neutralizing antibodies

Delphine Planas et al.Nov 17, 2022
+22
I
T
D
Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4 and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariants BA.2.75.2 and BQ.1.1 are expected to become predominant in many countries in November 2022. They carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lost any antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remained weakly active. BQ.1.1 was also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals were low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increased these titers, which remained about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increased more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitated their spread in immunized populations and raises concerns about the efficacy of most currently available mAbs.
728
Citation28
0
Save
47

Syncytia formation by SARS-CoV-2 infected cells

Julian Buchrieser et al.Jul 14, 2020
+11
M
J
J
Abstract Severe cases of COVID-19 are associated with extensive lung damage and the presence of infected multinucleated syncytial pneumocytes. The viral and cellular mechanisms regulating the formation of these syncytia are not well understood. Here, we show that SARS-CoV-2 infected cells express the viral Spike protein (S) at their surface and fuse with ACE2-positive neighbouring cells. Expression of S without any other viral proteins triggers syncytia formation. Type-I interferon (IFN)-induced transmembrane proteins (IFITMs), a family of restriction factors that block the entry of many viruses, inhibit S-mediated fusion, with IFITM1 being more active than IFITM2 and IFITM3. On the contrary, the TMPRSS2 serine protease, which is known to enhance infectivity of cell-free virions, processes both S and ACE2 and increases syncytia formation by accelerating the fusion process. TMPRSS2 thwarts the antiviral effect of IFITMs. Our results show that the pathological effects of SARS-CoV-2 are modulated by cellular proteins that either inhibit or facilitate syncytia formation. One Sentence Summary Syncytia produced by SARS-CoV-2 infected cells and regulation of their formation by IFITMs and TMPRSS2.
47
Citation20
0
Save
Load More