AF
Amy Flaxman
Author with expertise in Coronavirus Disease 2019 Research
Jenner Institute, University of Oxford, Vaccine Research Institute
+ 4 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
24
h-index:
31
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
892

Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2

Wanwisa Dejnirattisai et al.Oct 24, 2023
+48
P
D
W
Summary Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
892
Citation23
0
Save
0

Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Ebola, Sudan, Marburg and Lassa viruse

Amy Flaxman et al.Sep 11, 2024
+15
S
S
A
Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.
0
Citation1
0
Save
0

ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques

Neeltje Doremalen et al.Dec 1, 2020
+32
A
T
N
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in December 2019 and is responsible for the COVID-19 pandemic . Vaccines are an essential countermeasure urgently needed to control the pandemic . Here, we show that the adenovirus-vectored vaccine ChAdOx1 nCoV-19, encoding the spike protein of SARS-CoV-2, is immunogenic in mice, eliciting a robust humoral and cell-mediated response. This response was not Th2 dominated, as demonstrated by IgG subclass and cytokine expression profiling. A single vaccination with ChAdOx1 nCoV-19 induced a humoral and cellular immune response in rhesus macaques. We observed a significantly reduced viral load in bronchoalveolar lavage fluid and respiratory tract tissue of vaccinated animals challenged with SARS-CoV-2 compared with control animals, and no pneumonia was observed in vaccinated rhesus macaques. Importantly, no evidence of immune-enhanced disease following viral challenge in vaccinated animals was observed. ChAdOx1 nCoV-19 is currently under investigation in a phase I clinical trial. Safety, immunogenicity and efficacy against symptomatic PCR-positive COVID-19 disease will now be assessed in randomised controlled human clinical trials.
341

Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

Wanwisa Dejnirattisai et al.Oct 11, 2023
+68
D
J
W
Summary On the 24 th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.
0

Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Zaire ebolavirus, Sudan ebolavirus, Marburg and Lassa viruses

Amy Flaxman et al.Jun 3, 2024
+14
S
S
A
Abstract Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan ebolavirus resulted in 164 cases with 55 deaths. In February 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea resulting in 15 confirmed and 23 suspected cases to date, with a second outbreak occurring concurrently in Tanzania. There are no clearly defined correlates of protection against these VHF, impeding targeted subunit vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Zaire ebolavirus, Sudan ebolavirus, Marburg) and an arenavirus (Lassa). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19 /AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Zaire ebolavirus, Sudan ebolavirus and Marburg virus challenges in a small animal model. Author summary Outbreaks caused by Ebola and Lassa viruses have made headlines worldwide in recent years. Most recently, in 2023 a Marburg virus outbreak has claimed tens of lives with a high case fatality rate. As yet, no licensed vaccine exists to protect against this and other viral haemorrhagic fevers. An ideal vaccine would induce long-lasting immunity to, and protection from, viruses causing viral haemorrhagic fevers. We developed vaccines which can target multiple strains of Ebolavirus, the closely related Marburg virus and Lassa virus. The geographical ranges of these viruses overlap in West and Central Africa. We used viral vector platform technologies to generate these vaccines; ChAdOx1 has now been administered worldwide as part of COVID-19 vaccine rollouts, and MVA has been used in numerous clinical trials thus far. We found that both long lasting, antigen specific T cell and antibody responses were induced after vaccination. Lastly, we demonstrated these vaccines could protect small animals against challenge with Zaire ebolavirus, Sudan ebolavirus and Marburg virus.