SG
Sarah Gilbert
Author with expertise in Coronavirus Disease 2019 Research
Oxford BioMedica (United Kingdom), Jenner Institute, University of Oxford
+ 14 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
19
(79% Open Access)
Cited by:
142
h-index:
93
/
i10-index:
268
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
400

Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces shedding of SARS-CoV-2 D614G in rhesus macaques

Neeltje Doremalen et al.Oct 11, 2023
+18
J
J
N
Intramuscular vaccination with ChAdOx1 nCoV-19/AZD1222 protected rhesus macaques against pneumonia but did not reduce shedding of SARS-CoV-2. Here we investigate whether intranasally administered ChAdOx1 nCoV-19 reduces shedding, using a SARS-CoV-2 virus with the D614G mutation in the spike protein. Viral load in swabs obtained from intranasally vaccinated hamsters was significantly decreased compared to controls and no viral RNA or infectious virus was found in lung tissue, both in a direct challenge and a transmission model. Intranasal vaccination of rhesus macaques resulted in reduced shedding and a reduction in viral load in bronchoalveolar lavage and lower respiratory tract tissue. In conclusion, intranasal vaccination reduced shedding in two different SARS-CoV-2 animal models, justifying further investigation as a potential vaccination route for COVID-19 vaccines.
2k

ChAdOx1 nCoV-19 (AZD1222) protects Syrian hamsters against SARS-CoV-2 B.1.351 and B.1.1.7

Robert Fischer et al.Oct 23, 2023
+17
D
N
R
We investigated ChAdOx1 nCoV-19 (AZD1222) vaccine efficacy against SARS-CoV-2 variants of concern (VOCs) B.1.1.7 and B.1.351 in Syrian hamsters. We previously showed protection against SARS-CoV-2 disease and pneumonia in hamsters vaccinated with a single dose of ChAdOx1 nCoV-19. Here, we observed a 9.5-fold reduction of virus neutralizing antibody titer in vaccinated hamster sera against B.1.351 compared to B.1.1.7. Vaccinated hamsters challenged with B.1.1.7 or B.1.351 did not lose weight compared to control animals. In contrast to control animals, the lungs of vaccinated animals did not show any gross lesions. Minimal to no viral subgenomic RNA (sgRNA) and no infectious virus was detected in lungs of vaccinated animals. Histopathological evaluation showed extensive pulmonary pathology caused by B.1.1.7 or B.1.351 replication in the control animals, but none in the vaccinated animals. These data demonstrate the effectiveness of the ChAdOx1 nCoV-19 vaccine against clinical disease caused by B.1.1.7 or B.1.351 VOCs.
2k
Citation23
0
Save
892

Antibody evasion by the Brazilian P.1 strain of SARS-CoV-2

Wanwisa Dejnirattisai et al.Oct 24, 2023
+48
P
D
W
Summary Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
892
Citation23
0
Save
78

Native-like SARS-CoV-2 spike glycoprotein expressed by ChAdOx1 nCoV-19/AZD1222 vaccine

Yoji Watanabe et al.Oct 24, 2023
+20
E
L
Y
Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirms the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.
78
Citation14
0
Save
0

A single dose of ChAdOx1 MERS provides broad protective immunity against a variety of MERS-CoV strains

Neeltje Doremalen et al.May 6, 2020
+11
F
E
N
Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) continues to infect humans via the dromedary camel reservoir and can transmit between humans, most commonly via nosocomial transmission. Currently, no licensed vaccine is available. Previously we showed that vaccination of transgenic mice with ChAdOx1 MERS, encoding the MERS S protein, prevented disease upon lethal challenge. In the current study we show that rhesus macaques seroconverted rapidly after a single intramuscular vaccination with ChAdOx1 MERS. Upon MERS-CoV challenge vaccinated animals were protected against respiratory injury and pneumonia and had a reduction in viral load in lung tissue of several logs. Furthermore, we did not detect MERS-CoV replication in type I and II pneumocytes of ChAdOx1 MERS vaccinated animals. A prime-boost regimen of ChAdOx1 MERS boosted antibody titers, and viral replication was completely absent from the respiratory tract tissue of these rhesus macaques. Finally, we investigated the ability of ChAdOx1 MERS to protect against six different MERS-CoV strains, isolated between 2012 to 2018, from dromedary camels and humans in the Middle East and Africa. Antibodies elicited by ChAdOx1 MERS in rhesus macaques were able to neutralize all MERS-CoV strains. Vaccination of transgenic hDPP4 mice with ChAdOx1 MERS completely protected the animals against disease and lethality for all different MERS-CoV strains. The data support further clinical development of ChAdOx1 MERS supported by CEPI. One Sentence Summary Prime-only vaccination with ChAdOx1 MERS provides protective immunity against HCoV-EMC/2012 replication in rhesus macaques, and a wide variety of MERS-CoV strains in mice.
0
Citation13
0
Save
221

The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 Beta (B.1.351) and other variants of concern in preclinical studies

Alexandra Spencer et al.Oct 24, 2023
+23
M
S
A
Abstract There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), high titre binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) are induced. In addition, a strong and polyfunctional T cell response was measured in these booster regimens. These data support the ongoing clinical development and testing of this new variant vaccine.
221
Citation11
0
Save
65

A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice

Alyssa Silva-Cayetano et al.Oct 24, 2023
+16
S
W
A
Abstract The spread of SARS-CoV-2 has caused a global pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection, and may enable the relaxation of social distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection, therefore it is desirable that any new vaccine candidates should elicit a robust immune response in older adults. Here, we test the immunogenicity of the adenoviral vectored vaccine ChAdOx1 nCoV-19 (AZD-1222) in aged mice. We find that a single dose of this vaccine induces cellular and humoral immunity in aged mice, but at a reduced magnitude than in younger adult mice. Furthermore, we report that a second dose enhances the immune response to this vaccine in aged mice, indicating that a primeboost strategy may be a rational approach to enhance immunogenicity in older persons.
65
Citation5
0
Save
830

Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19

Simon Graham et al.Oct 24, 2023
+39
A
R
S
Abstract Clinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.
830
Citation2
0
Save
1

ChAdOx1 NiV vaccination protects against lethal Nipah Bangladesh virus infection in African green monkeys

Neeltje Doremalen et al.Oct 24, 2023
+10
F
V
N
Abstract Nipah virus (NiV) is a highly pathogenic and re-emerging virus which causes sporadic but severe infections in humans. Currently, no vaccines against NiV have been approved. We previously showed that ChAdOx1 NiV provides full protection against a lethal challenge with NiV Bangladesh (NiV-B) in hamsters. Here, we investigated the efficacy of ChAdOx1 NiV in the lethal African green monkeys (AGMs) NiV challenge model. AGMs were vaccinated either 4 weeks before challenge (prime vaccination), or 8 and 4 weeks before challenge with ChAdOx1 NiV (prime-boost vaccination). A robust humoral and cellular response was detected starting 14 days post initial vaccination. Upon challenge, control animals displayed a variety of signs and had to be euthanized between 5- and 7-days post inoculation. In contrast, vaccinated animals showed no signs of disease, and we were unable to detect infectious virus in all but one swab and all tissues. Importantly, no to limited antibodies against fusion protein or nucleoprotein IgG could be detected 42 days post challenge, suggesting that vaccination induced a very robust protective immune response preventing extensive virus replication. One Sentence Summary A single vaccination with ChAdOx1 NiV protects African green monkeys against lethal disease induced by Nipah virus inoculation.
1
Citation1
0
Save
0

Potent immunogenicity and protective efficacy of a multi-pathogen vaccination targeting Ebola, Sudan, Marburg and Lassa viruse

Amy Flaxman et al.Sep 11, 2024
+15
S
S
A
Viral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths. In 2023, a Marburg disease outbreak was confirmed in Equatorial Guinea and Tanzania resulting in over 49 confirmed or suspected cases; 41 of which were fatal. There are no clearly defined correlates of protection against these VHF, impeding targeted vaccine development. Any vaccine developed should therefore induce strong and preferably long-lasting humoral and cellular immunity against these viruses. Ideally this immunity should also cross-protect against viral variants, which are known to circulate in animal reservoirs and cause human disease. We have utilized two viral vectored vaccine platforms, an adenovirus (ChAdOx1) and Modified Vaccinia Ankara (MVA), to develop a multi-pathogen vaccine regime against three filoviruses (Ebola virus, Sudan virus, Marburg virus) and an arenavirus (Lassa virus). These platform technologies have consistently demonstrated the capability to induce robust cellular and humoral antigen-specific immunity in humans, most recently in the rollout of the licensed ChAdOx1-nCoV19/AZD1222. Here, we show that our multi-pathogen vaccines elicit strong cellular and humoral immunity, induce a diverse range of chemokines and cytokines, and most importantly, confers protection after lethal Ebola virus, Sudan virus and Marburg virus challenges in a small animal model.
0
Citation1
0
Save
Load More