TA
Taylor Adams
Author with expertise in Idiopathic Pulmonary Fibrosis: Diagnosis and Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
30
(87% Open Access)
Cited by:
1,644
h-index:
23
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis

Tatsuya Tsukui et al.Apr 21, 2020
Abstract Collagen-producing cells maintain the complex architecture of the lung and drive pathologic scarring in pulmonary fibrosis. Here we perform single-cell RNA-sequencing to identify all collagen-producing cells in normal and fibrotic lungs. We characterize multiple collagen-producing subpopulations with distinct anatomical localizations in different compartments of murine lungs. One subpopulation, characterized by expression of Cthrc1 (collagen triple helix repeat containing 1), emerges in fibrotic lungs and expresses the highest levels of collagens. Single-cell RNA-sequencing of human lungs, including those from idiopathic pulmonary fibrosis and scleroderma patients, demonstrate similar heterogeneity and CTHRC1 -expressing fibroblasts present uniquely in fibrotic lungs. Immunostaining and in situ hybridization show that these cells are concentrated within fibroblastic foci. We purify collagen-producing subpopulations and find disease-relevant phenotypes of Cthrc1 -expressing fibroblasts in in vitro and adoptive transfer experiments. Our atlas of collagen-producing cells provides a roadmap for studying the roles of these unique populations in homeostasis and pathologic fibrosis.
0
Citation428
0
Save
4

Integrated Single-Cell Atlas of Endothelial Cells of the Human Lung

J.C. Schupp et al.May 25, 2021
Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium.We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension.Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com).Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.
4
63

Single Cell RNA-seq and Mass Cytometry Reveals a Novel and a Targetable Population of Macrophages in Idiopathic Pulmonary Fibrosis

EA Ayaub et al.Jan 5, 2021
Abstract In this study, we leveraged a combination of single cell RNAseq, cytometry by time of flight (CyTOF), and flow cytometry to study the biology of a unique macrophage population in pulmonary fibrosis. Using the profiling data from 312,928 cells derived from 32 idiopathic pulmonary fibrosis (IPF), 29 healthy control and 18 chronic obstructive pulmonary disease (COPD) lungs, we identified an expanded population of macrophages in IPF that have a unique transcriptional profile associated with pro-fibrotic signature. These macrophages attain a hybrid transitional state between alveolar and interstitial macrophages, are enriched with biological processes of pro-fibrotic immune cells, and express novel surface markers and genes that have not been previously reported. We then applied single cell CyTOF to simultaneously measure 37 markers to precisely phenotype the uniquely expanded macrophage subset in IPF lungs. The SPADE algorithm independently identified an expanded macrophage cluster, and validated CD84 and CD36 as novel surface markers that highly label this cluster. Using a separate validation cohort, we confirmed an increase in CD84 ++ CD36 ++ macrophage population in IPF compared to control and COPD lungs by flow cytometry. Further, using the signature from the IPF-specific macrophages and the LINCS drug database, we predicted small molecules that could reverse the signature of IPF-specific macrophages, and validated two molecules, CRT and Cucur, using THP-1 derived human macrophages and precision-cut lung slices (PCLS) from IPF patients. Utilizing a multi-dimensional translational approach, our work identified a novel and targetable population of macrophages found in end-stage pulmonary fibrosis. One Sentence Summary Single cell RNAseq, CyTOF, and flow cytometry reveal the presence of an aberrant macrophage population in pulmonary fibrosis
63
Citation28
0
Save
93

Integrated Single Cell Atlas of Endothelial Cells of the Human Lung

J.C. Schupp et al.Oct 22, 2020
Abstract Background Despite its importance in health and disease, the cellular diversity of the lung endothelium has not been systematically characterized in humans. Here we provide a reference atlas of human lung endothelial cells (ECs), to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium, both in health and disease. Methods We reprocessed control single cell RNA sequencing (scRNAseq) data from five datasets of whole lungs that were used for the analysis of pan-endothelial markers, we later included a sixth dataset of sorted control EC for the vascular subpopulation analysis. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by immunohistochemistry and in situ hybridization. Signaling network between different lung cell types was studied using connectomic analysis. For cross species analysis we applied the same methods to scRNAseq data obtained from mouse lungs. Results The six lung scRNAseq datasets were reanalyzed and annotated to identify over 15,000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including pan-endothelial, pan-vascular and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial and venous ECs we found previously indistinguishable subpopulations; among venous EC we identified two previously indistinguishable populations, pulmonary-venous ECs (COL15A1 neg ) localized to the lung parenchyma and systemic-venous ECs (COL15A1 pos ) localized to the airways and the visceral pleura; among capillary EC we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1 and TBX2 and general capillary EC. We confirmed that all six endothelial cell types, including the systemic-venous EC and aerocytes are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-Receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. Our manuscript is accompanied by an online data mining tool ( www.LungEndothelialCellAtlas.com ). Conclusion Our integrated analysis provides the comprehensive and well-crafted reference atlas of lung endothelial cells in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.
93
Citation8
0
Save
24

Airway Basal Cells show a dedifferentiated KRT17highPhenotype and promote Fibrosis in Idiopathic Pulmonary Fibrosis

Benedikt Jaeger et al.Sep 4, 2020
ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a fatal disease with limited treatment options. In this study we focus on the profibrotic properties of airway basal cells (ABC) obtained from patients with IPF (IPF-ABC). Single cell RNA sequencing of bronchial brushes revealed extensive reprogramming of IPF-ABC towards a KRT17 high PTEN low dedifferentiated cell type. In the 3D organoid model, compared to ABC obtained from healthy volunteers, IPF-ABC give rise to more bronchospheres, de novo bronchial structures resembling lung developmental processes, induce fibroblast proliferation and extracellular matrix deposition in co-culture. Intratracheal application of IPF-ABC into minimally injured lungs of Rag2 -/- or NRG mice causes severe fibrosis, remodeling of the alveolar compartment, and formation of honeycomb cyst-like structures. Connectivity MAP analysis of scRNA seq of bronchial brushings suggested that gene expression changes in IPF-ABC can be reversed by SRC inhibition. After demonstrating enhanced SRC expression and activity in these cells, and in IPF lungs, we tested the effects of saracatinib, a potent SRC inhibitor previously studied in humans. We demonstrated that saracatinib modified in-vitro and in-vivo the profibrotic changes observed in our 3D culture system and novel mouse xenograft model.
24
Citation7
0
Save
180

Microenvironmental Sensing by Fibroblasts Controls Macrophage Population Size

Xu Zhou et al.Jan 21, 2022
Abstract Animal tissues are comprised of diverse cell types. However, the mechanisms controlling the number of each cell type within tissue compartments remain poorly understood. Here, we report that different cell types utilize distinct strategies to control population numbers. Proliferation of fibroblasts, stromal cells important for tissue integrity, is limited by space availability. In contrast, proliferation of macrophages, innate immune cells involved in defense, repair, and homeostasis, is constrained by growth factor availability. Examination of density-dependent gene expression in fibroblasts revealed that Hippo and TGF- β target genes are both regulated by cell density. We found YAP1, the transcriptional co-activator of the Hippo signaling pathway, directly regulates expression of Csf1 , the lineage-specific growth factor for macrophages, through an enhancer of Csf1 that is specifically active in fibroblasts. Activation of YAP1 in fibroblasts elevates Csf1 expression and is sufficient to increase the number of macrophages at steady state. Our data also suggest that expression programs in fibroblasts that change with density may result from sensing of mechanical force through actin-dependent mechanisms. Altogether, we demonstrate that two different modes of population control are connected and coordinated to regulate cell numbers of distinct cell types. Sensing of the tissue environment may serve as a general strategy to control tissue composition. Significance Statement Collections of distinct cell types constitute animal tissues. To perform their unique functions, each cell type must exist in the correct number and proportion in a given tissue compartment. However, many of the mechanisms regulating and coordinating cell population sizes remain enigmatic. Our study characterizes two different modes of population size control, utilized by two ubiquitous cell types, macrophages and fibroblasts. Macrophage populations are more sensitive to the presence of growth factors in the environment and fibroblasts are more sensitive to space limitations. Intriguingly, space-sensing mechanisms in fibroblasts directly control the production of growth factor for macrophages and thus macrophage numbers. This link suggests a mechanism by which macrophage compartment size is controlled by stromal cells according to the microenvironment.
180
Citation6
0
Save
Load More