FS
Fei Shao
Author with expertise in Coronavirus Disease 2019 Research
Capital Medical University, Zhejiang Provincial People's Hospital, People’s University
+ 12 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
20
(95% Open Access)
Cited by:
363
h-index:
25
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution

Yunlong Cao et al.Mar 11, 2024
+22
J
F
Y
Continuous evolution of Omicron has led to a rapid and simultaneous emergence of numerous variants that display growth advantages over BA.5 (ref. 1). Despite their divergent evolutionary courses, mutations on their receptor-binding domain (RBD) converge on several hotspots. The driving force and destination of such sudden convergent evolution and its effect on humoral immunity remain unclear. Here we demonstrate that these convergent mutations can cause evasion of neutralizing antibody drugs and convalescent plasma, including those from BA.5 breakthrough infection, while maintaining sufficient ACE2-binding capability. BQ.1.1.10 (BQ.1.1 + Y144del), BA.4.6.3, XBB and CH.1.1 are the most antibody-evasive strains tested. To delineate the origin of the convergent evolution, we determined the escape mutation profiles and neutralization activity of monoclonal antibodies isolated from individuals who had BA.2 and BA.5 breakthrough infections2,3. Owing to humoral immune imprinting, BA.2 and especially BA.5 breakthrough infection reduced the diversity of the neutralizing antibody binding sites and increased proportions of non-neutralizing antibody clones, which, in turn, focused humoral immune pressure and promoted convergent evolution in the RBD. Moreover, we show that the convergent RBD mutations could be accurately inferred by deep mutational scanning profiles4,5, and the evolution trends of BA.2.75 and BA.5 subvariants could be well foreseen through constructed convergent pseudovirus mutants. These results suggest that current herd immunity and BA.5 vaccine boosters may not efficiently prevent the infection of Omicron convergent variants.
1

Further humoral immunity evasion of emerging SARS-CoV-2 BA.4 and BA.5 subvariants

Fanchong Jian et al.Oct 24, 2023
+12
W
Y
F
Abstract Multiple BA.4 and BA.5 subvariants with R346 mutations on the spike glycoprotein have been identified in various countries, such as BA.4.6/BF.7 harboring R346T, BA.4.7 harboring R346S, and BA.5.9 harboring R346I. These subvariants, especially BA.4.6, exhibit substantial growth advantages compared to BA.4/BA.5. In this study, we showed that BA.4.6, BA.4.7, and BA.5.9 displayed higher humoral immunity evasion capability than BA.4/BA.5, causing 1.5 to 1.9-fold decrease in NT50 of the plasma from BA.1 and BA.2 breakthrough-infection convalescents compared to BA.4/BA.5. Importantly, plasma from BA.5 breakthrough-infection convalescents also exhibits significant neutralization activity decrease against BA.4.6, BA.4.7, and BA.5.9 than BA.4/BA.5, showing on average 2.4 to 2.6-fold decrease in NT50. For neutralizing antibody drugs, Bebtelovimab remains potent, while Evusheld is completely escaped by these subvariants. Together, our results rationalize the prevailing advantages of the R346 mutated BA.4/BA.5 subvariants and urge the close monitoring of these mutants, which could lead to the next wave of the pandemic.
77

Omicron BA.2 specifically evades broad sarbecovirus neutralizing antibodies

Yunlong Cao et al.Oct 24, 2023
+37
F
A
Y
Abstract Omicron sub-lineage BA.2 has rapidly surged globally, accounting for over 60% of recent SARS-CoV-2 infections. Newly acquired RBD mutations and high transmission advantage over BA.1 urge the investigation of BA.2’s immune evasion capability. Here, we show that BA.2 causes strong neutralization resistance, comparable to BA.1, in vaccinated individuals’ plasma. However, BA.2 displays more severe antibody evasion in BA.1 convalescents, and most prominently, in vaccinated SARS convalescents’ plasma, suggesting a substantial antigenicity difference between BA.2 and BA.1. To specify, we determined the escaping mutation profiles 1,2 of 714 SARS-CoV-2 RBD neutralizing antibodies, including 241 broad sarbecovirus neutralizing antibodies isolated from SARS convalescents, and measured their neutralization efficacy against BA.1, BA.1.1, BA.2. Importantly, BA.2 specifically induces large-scale escape of BA.1/BA.1.1-effective broad sarbecovirus neutralizing antibodies via novel mutations T376A, D405N, and R408S. These sites were highly conserved across sarbecoviruses, suggesting that Omicron BA.2 arose from immune pressure selection instead of zoonotic spillover. Moreover, BA.2 reduces the efficacy of S309 (Sotrovimab) 3,4 and broad sarbecovirus neutralizing antibodies targeting the similar epitope region, including BD55-5840. Structural comparisons of BD55-5840 in complexes with BA.1 and BA.2 spike suggest that BA.2 could hinder antibody binding through S371F-induced N343-glycan displacement. Intriguingly, the absence of G446S mutation in BA.2 enabled a proportion of 440-449 linear epitope targeting antibodies to retain neutralizing efficacy, including COV2-2130 (Cilgavimab) 5 . Together, we showed that BA.2 exhibits distinct antigenicity compared to BA.1 and provided a comprehensive profile of SARS-CoV-2 antibody escaping mutations. Our study offers critical insights into the humoral immune evading mechanism of current and future variants.
0

Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity

Pan Liu et al.Sep 16, 2024
+16
B
C
P
ABSTRACT Selective pressures have given rise to a number of SARS-CoV-2 variants during the prolonged course of the COVID-19 pandemic. Recently evolved variants differ from ancestors in additional glycosylation within the spike protein receptor-binding domain (RBD). Details of how the acquisition of glycosylation impacts viral fitness and human adaptation are not clearly understood. Here, we dissected the role of N354-linked glycosylation, acquired by BA.2.86 sub-lineages, as a RBD conformational control element in attenuating viral infectivity. The reduced infectivity is recovered in the presence of heparin sulfate, which targets the ‘N354 pocket’ to ease restrictions of conformational transition resulting in a ‘RBD-up’ state, thereby conferring an adjustable infectivity. Furthermore, N354 glycosylation improved spike cleavage and cell–cell fusion, and in particular escaped one subset of ADCC antibodies. Together with reduced immunogenicity in hybrid immunity background, these indicate a single spike amino acid glycosylation event provides selective advantage in humans through multiple mechanisms.
0

Antigenicity assessment of SARS-CoV-2 saltation variant BA.2.87.1

Sijie Yang et al.May 26, 2024
+13
F
Y
S
Abstract The recent emergence of a SARS-CoV-2 saltation variant, BA.2.87.1, which features 65 spike mutations relative to BA.2, has attracted worldwide attention. In this study, we elucidate the antigenic characteristics and immune evasion capability of BA.2.87.1. Our findings reveal that BA.2.87.1 is more susceptible to XBB-induced humoral immunity compared to JN.1. Notably, BA.2.87.1 lacks critical escaping mutations in the receptor binding domain (RBD) thus allowing various classes of neutralizing antibodies (NAbs) that were escaped by XBB or BA.2.86 subvariants to neutralize BA.2.87.1, although the deletions in the N-terminal domain (NTD), specifically 15-23del and 136-146del, compensate for the resistance to humoral immunity. Interestingly, several neutralizing antibody drugs have been found to restore their efficacy against BA.2.87.1, including SA58, REGN-10933 and COV2-2196. Hence, our results suggest that BA.2.87.1 may not become widespread until it acquires multiple RBD mutations to achieve sufficient immune evasion comparable to that of JN.1.
0
Citation2
0
Save
0

Humoral immunogenicity comparison of XBB and JN.1 in human infections

Fanchong Jian et al.May 28, 2024
+19
W
A
F
The ongoing evolution of SARS-CoV-2 continues to challenge the global immune barrier established by infections and vaccine boosters. Recently, the emergence and dominance of the JN.1 lineage over XBB variants have prompted a reevaluation of current vaccine strategies. Despite the demonstrated effectiveness of XBB-based vaccines against JN.1, concerns persist regarding the durability of neutralizing antibody (NAb) responses against evolving JN.1 subvariants. In this study, we compared the humoral immunogenicity of XBB and JN.1 lineage infections in human subjects with diverse immune histories to understand the antigenic and immunogenic distinctions between these variants. Similar to observations in naive mice, priming with XBB and JN.1 in humans without prior SARS-CoV-2 exposure results in distinct NAb responses, exhibiting minimal cross-reactivity. Importantly, breakthrough infections (BTI) with the JN.1 lineage induce 5.9-fold higher neutralization titers against JN.1 compared to those induced by XBB BTI. We also observed notable immune evasion of recently emerged JN.1 sublineages, including JN.1+R346T+F456L, with KP.3 showing the most pronounced decrease in neutralization titers by both XBB and JN.1 BTI sera. These results underscore the challenge posed by the continuously evolving SARS-CoV-2 JN.1 and support the consideration of switching the focus of future SARS-CoV-2 vaccine updates to the JN.1 lineage.
1

Antigenicity and infectivity characterization of SARS-CoV-2 BA.2.86

Sijie Yang et al.Oct 24, 2023
+17
F
Y
S
Abstract The recently identified SARS-CoV-2 variant, BA.2.86, which carries a substantial number of Spike mutations, has raised a global alarm. An immediate assessment of its antigenic properties and infectivity is necessary. Here, we reveal the distinct antigenicity of BA.2.86 compared with previous variants including XBB.1.5. BA.2.86 significantly evades convalescent plasma from XBB breakthrough infection (BTI) and reinfections. Key mutations that mediate the enhanced resistance include N450D, K356T, L452W, A484K, V483del, and V445H on the RBD, while BA.2.86’s NTD mutations and E554K on SD1 also largely contribute. However, we found that BA.2.86 pseudovirus exhibits compromised efficiency of infecting HEK293T-hACE2 cells compared to XBB.1.5 and EG.5, which may be caused by K356T, V483del, and E554K, and could potentially limit BA.2.86’s transmissibility. In sum, it appears that BA.2.86 has traded its infectivity for higher immune evasion during long-term host-viral evolution. Close attention should be paid to monitoring additional mutations that could improve BA.2.86’s infectivity.
0

Fast evolution of SARS-CoV-2 BA.2.86 to JN.1 under heavy immune pressure

Sijie Yang et al.Nov 17, 2023
+13
Y
Y
S
While the BA.2.86 variant demonstrated significant antigenic drift and enhanced ACE2 binding affinity, its ability to evade humoral immunity was relatively moderate compared to dominant strains like EG.5 and HK.3. However, the emergence of a new subvariant, JN.1 (BA.2.86.1.1), which possesses an additional spike mutation, L455S, compared to BA.2.86, showed a markedly increased prevalence in Europe and North America, especially in France. Here, we found that L455S of JN.1 significantly enhances immune evasion capabilities at the expense of reduced ACE2 binding affinity. This mutation enables JN.1 to effectively evade Class 1 neutralizing antibodies, offsetting BA.2.869s susceptibility and thus allowing it to outcompete both its precursor BA.2.86 and the prevailing variants HV.1 (XBB.1.5+L452R+F456L) and JD.1.1 (XBB.1.5+L455F+F456L+A475V) in terms of humoral immune evasion. The rapid evolution from BA.2.86 to JN.1, similar to the earlier transition from BA.2.75 to CH.1.1, highlights the importance of closely monitoring strains with high ACE2 binding affinity and distinct antigenicity, despite their unremarkable immune evasion capabilities. Such strains have the potential to quickly accumulate mutations that enhance their immune escape during transmission, often at the cost of receptor binding.
800

Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75

Yunlong Cao et al.Oct 13, 2023
+25
L
W
Y
Abstract Recently emerged SARS-CoV-2 Omicron subvariant, BA.2.75, displayed a local growth advantage over BA.2.38, BA.2.76 and BA.5 in India. The underlying mechanism of BA.2.75’s enhanced infectivity, especially compared to BA.5, remains unclear. Here, we show that BA.2.75 exhibits substantially higher ACE2-binding affinity than BA.5. Also, BA.2.75 spike shows decreased thermostability and increased “up” RBD conformation in acidic conditions, suggesting enhanced low-pH-endosomal cell-entry pathway utilization. BA.2.75 is less humoral immune evasive than BA.4/BA.5 in BA.1/BA.2 breakthrough-infection convalescents; however, BA.2.75 shows heavier neutralization evasion in Delta breakthrough-infection convalescents. Importantly, plasma from BA.5 breakthrough infection exhibit significantly weaker neutralization against BA.2.75 than BA.5, mainly due to BA.2.75’s distinct RBD and NTD-targeting antibody escaping pattern from BA.4/BA.5. Additionally, Evusheld and Bebtelovimab remain effective against BA.2.75, and Sotrovimab recovered RBD-binding affinity. Together, our results suggest BA.2.75 may prevail after the global BA.4/BA.5 wave, and its increased receptor-binding capability could allow further incorporation of immune-evasive mutations.
1k

Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies

Yunlong Cao et al.Oct 11, 2023
+26
F
J
Y
Abstract The SARS-CoV-2 B.1.1.529 variant (Omicron) contains 15 mutations on the receptor-binding domain (RBD). How Omicron would evade RBD neutralizing antibodies (NAbs) requires immediate investigation. Here, we used high-throughput yeast display screening 1,2 to determine the RBD escaping mutation profiles for 247 human anti-RBD NAbs and showed that the NAbs could be unsupervised clustered into six epitope groups (A-F), which is highly concordant with knowledge-based structural classifications 3-5 . Strikingly, various single mutations of Omicron could impair NAbs of different epitope groups. Specifically, NAbs in Group A-D, whose epitope overlap with ACE2-binding motif, are largely escaped by K417N, G446S, E484A, and Q493R. Group E (S309 site) 6 and F (CR3022 site) 7 NAbs, which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but still, a subset of NAbs are escaped by G339D, N440K, and S371L. Furthermore, Omicron pseudovirus neutralization showed that single mutation tolerating NAbs could also be escaped due to multiple synergetic mutations on their epitopes. In total, over 85% of the tested NAbs are escaped by Omicron. Regarding NAb drugs, the neutralization potency of LY-CoV016/LY-CoV555, REGN10933/REGN10987, AZD1061/AZD8895, and BRII-196 were greatly reduced by Omicron, while VIR-7831 and DXP-604 still function at reduced efficacy. Together, data suggest Omicron would cause significant humoral immune evasion, while NAbs targeting the sarbecovirus conserved region remain most effective. Our results offer instructions for developing NAb drugs and vaccines against Omicron and future variants.
Load More