MK
Mark Krasnow
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Stanford University, Howard Hughes Medical Institute, Center for Vascular Biology Research
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(83% Open Access)
Cited by:
259
h-index:
69
/
i10-index:
105
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

An integrated cell atlas of the lung in health and disease

Lisa Sikkema et al.Jan 26, 2024
+94
D
C
L
Abstract Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1 + profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
71

Molecular hallmarks of heterochronic parabiosis at single-cell resolution

Róbert Pálovics et al.Apr 6, 2022
+137
N
A
R
The ability to slow or reverse biological ageing would have major implications for mitigating disease risk and maintaining vitality1. Although an increasing number of interventions show promise for rejuvenation2, their effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. Here we performed single-cell RNA sequencing on 20 organs to reveal cell-type-specific responses to young and aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, haematopoietic stem cells and hepatocytes are among those cell types that are especially responsive. On the pathway level, young blood invokes new gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. We observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it in select cell types. Together, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.
71
Citation67
1
Save
1

Tabula Microcebus: A transcriptomic cell atlas of mouse lemur, an emerging primate model organism

Camille Ezran et al.Oct 24, 2023
+34
S
S
C
ABSTRACT Mouse lemurs are the smallest, fastest reproducing, and among the most abundant primates, and an emerging model organism for primate biology, behavior, health and conservation. Although much has been learned about their physiology and their Madagascar ecology and phylogeny, little is known about their cellular and molecular biology. Here we used droplet- and plate-based single cell RNA-sequencing to profile 226,000 cells from 27 mouse lemur organs and tissues opportunistically procured from four donors clinically and histologically characterized. Using computational cell clustering, integration, and expert cell annotation, we defined and biologically organized over 750 mouse lemur molecular cell types and their full gene expression profiles. These include cognates of most classical human cell types, including stem and progenitor cells, and the developmental programs for spermatogenesis, hematopoiesis, and other adult tissues. We also described dozens of previously unidentified or sparsely characterized cell types and subtypes. We globally compared cell type expression profiles to define the molecular relationships of cell types across the body, and explored primate cell type evolution by comparing mouse lemur cell profiles to those of the homologous cells in human and mouse. This revealed cell type specific patterns of primate cell specialization even within a single tissue compartment, as well as many cell types for which lemur provides a better human model than mouse. The atlas provides a cellular and molecular foundation for studying this primate model organism, and establishes a general approach for other emerging model organisms.
1
Paper
Citation16
0
Save
0

Single-cell transcriptomic characterization of 20 organs and tissues from individual mice creates a Tabula Muris

Jim Karkanias et al.May 6, 2020
+109
A
N
J
The Tabula Muris Consortium We have created a compendium of single cell transcriptome data from the model organism Mus musculus comprising more than 100,000 cells from 20 organs and tissues. These data represent a new resource for cell biology, revealing gene expression in poorly characterized cell populations and allowing for direct and controlled comparison of gene expression in cell types shared between tissues, such as T-lymphocytes and endothelial cells from distinct anatomical locations. Two distinct technical approaches were used for most tissues: one approach, microfluidic droplet-based 3’-end counting, enabled the survey of thousands of cells at relatively low coverage, while the other, FACS-based full length transcript analysis, enabled characterization of cell types with high sensitivity and coverage. The cumulative data provide the foundation for an atlas of transcriptomic cell biology.
25

Molecular, anatomical, and functional organization of lung interoceptors

Yin Liu et al.Oct 24, 2023
M
A
Y
ABSTRACT Interoceptors, sensory neurons that monitor internal organs and states, are essential for physiological homeostasis and generating internal perceptions. Here we describe a comprehensive transcriptomic atlas of interoceptors of the mouse lung, defining 10 molecular subtypes that differ in developmental origin, myelination, receptive fields, terminal morphologies, and cell contacts. Each subtype expresses a unique but overlapping combination of sensory receptors that detect diverse physiological and pathological stimuli, and each can signal to distinct sets of lung cells including immune cells, forming a local neuroimmune interaction network. Functional interrogation of two mechanosensory subtypes reveals exquisitely-specific homeostatic roles in breathing, one regulating inspiratory time and the other inspiratory flow. The results suggest that lung interoceptors encode diverse and dynamic sensory information rivaling that of canonical exteroceptors, and this information is used to drive myriad local cellular interactions and enable precision control of breathing, while providing only vague perceptions of organ states.
25
Citation9
0
Save
6

Activated interstitial macrophages are a predominant target of viral takeover and focus of inflammation in COVID-19 initiation in human lung

Ting-Hsuan Wu et al.Aug 4, 2023
+22
A
K
T
ABSTRACT Early stages of deadly respiratory diseases such as COVID-19 have been challenging to elucidate due to lack of an experimental system that recapitulates the cellular and structural complexity of the human lung while allowing precise control over disease initiation and systematic interrogation of molecular events at cellular resolution. Here we show healthy human lung slices cultured ex vivo can be productively infected with SARS-CoV-2, and the cellular tropism of the virus and its distinct and dynamic effects on host cell gene expression can be determined by single cell RNA sequencing and reconstruction of “infection pseudotime” for individual lung cell types. This revealed that the prominent SARS-CoV-2 target is a population of activated interstitial macrophages (IMs), which as infection proceeds accumulate thousands of viral RNA molecules per cell, comprising up to 60% of the cellular transcriptome and including canonical and novel subgenomic RNAs. During viral takeover of IMs, there is cell-autonomous induction of a pro-fibrotic program ( TGFB1 , SPP1 ), and an inflammatory program characterized by the early interferon response, chemokines ( CCL2 , 7, 8 , 13, CXCL10 ) and cytokines ( IL6, IL10) , along with destruction of cellular architecture and formation of dense viral genomic RNA bodies revealed by super-resolution microscopy. In contrast, alveolar macrophages (AMs) showed neither viral takeover nor induction of a substantial inflammatory response, although both purified AMs and IMs supported production of infectious virions. Spike-dependent viral entry into AMs was neutralized by blockade of ACE2 or Sialoadhesin/CD169, whereas IM entry was neutralized only by DC-SIGN/CD209 blockade. These results provide a molecular characterization of the initiation of COVID-19 in human lung tissue, identify activated IMs as a prominent site of viral takeover and focus of inflammation and fibrosis, and suggest therapeutic targeting of the DC-SIGN/CD209 entry mechanism to prevent IM infection, destruction and early pathology in COVID-19 pneumonia. Our approach can be generalized to define the initiation program and evaluate therapeutics for any human lung infection at cellular resolution.
6
Citation9
5
Save
33

RNA splicing programs define tissue compartments and cell types at single cell resolution

Julia Olivieri et al.Oct 24, 2023
+9
P
R
J
Abstract More than 95% of human genes are alternatively spliced. Yet, the extent splicing is regulated at single-cell resolution has remained controversial due to both available data and methods to interpret it. We apply the SpliZ, a new statistical approach that is agnostic to transcript annotation, to detect cell-type-specific regulated splicing in > 110K carefully annotated single cells from 12 human tissues. Using 10x data for discovery, 9.1% of genes with computable SpliZ scores are cell-type specifically spliced. These results are validated with RNA FISH, single cell PCR, and in high throughput with Smart-seq2. Regulated splicing is found in ubiquitously expressed genes such as actin light chain subunit MYL6 and ribosomal protein RPS24 , which has an epithelial-specific microexon. 13% of the statistically most variable splice sites in cell-type specifically regulated genes are also most variable in mouse lemur or mouse. SpliZ analysis further reveals 170 genes with regulated splicing during sperm development using, 10 of which are conserved in mouse and mouse lemur. The statistical properties of the SpliZ allow model-based identification of subpopulations within otherwise indistinguishable cells based on gene expression, illustrated by subpopulations of classical monocytes with stereotyped splicing, including an un-annotated exon, in SAT1 , a Diamine acetyltransferase. Together, this unsupervised and annotation-free analysis of differential splicing in ultra high throughput droplet-based sequencing of human cells across multiple organs establishes splicing is regulated cell-type-specifically independent of gene expression.
33
Citation4
0
Save
7

Mouse lemur transcriptomic atlas elucidates primate genes, physiology, disease, and evolution

Camille Ezran et al.Oct 24, 2023
+24
J
S
C
ABSTRACT Mouse lemurs ( Microcebus spp.) are an emerging model organism for primate biology, behavior, health, and conservation. Although little has been known about their cellular and molecular biology, in the accompanying paper we used large-scale single cell RNA-sequencing of 27 organs and tissues to identify over 750 molecular cell types and their full transcriptomic profiles. Here we use this extensive transcriptomic dataset to uncover thousands of previously unidentified genes and hundreds of thousands of new splice junctions in the reference genome that globally define lemur gene structures and cell-type selective expression and splicing and to investigate gene expression evolution. We use the atlas to explore the biology and function of the lemur immune system, including the expression profiles across the organism of all MHC genes and chemokines in health and disease, and the mapping of neutrophil and macrophage development, trafficking, and activation, their local and global responses to infection, and primate-specific aspects of the program. We characterize other examples of primate-specific physiology and disease such as unique features of lemur adipocytes that may underlie their dramatic seasonal rhythms, and spontaneous metastatic endometrial cancer that models the human gynecological malignancy. We identify and describe the organism-wide expression profiles of over 400 primate genes missing in mice, some implicated in human disease. Thus, an organism-wide molecular cell atlas and molecular cell autopsies can enhance gene discovery, structure definition, and annotation in a new model organism, and can identify and elucidate primate-specific genes, physiology, diseases, and evolution.
7
Paper
Citation2
0
Save
16

Alveoli form directly by budding led by a single epithelial cell

Astrid Gillich et al.Oct 24, 2023
+3
D
K
A
Abstract Oxygen passes along the ramifying branches of the lung’s bronchial tree and enters the blood through millions of tiny, thin-walled gas exchange sacs called alveoli. Classical histological studies have suggested that alveoli arise late in development by a septation process that subdivides large air sacs into smaller compartments. Although a critical role has been proposed for contractile myofibroblasts, the mechanism of alveolar patterning and morphogenesis is not well understood. Here we present the three-dimensional cellular structure of alveoli, and show using single-cell labeling and deep imaging that an alveolus in the mouse lung is composed of just 2 epithelial cells and a total of a dozen cells of 7 different types, each with a remarkable, distinctive structure. By mapping alveolar development at cellular resolution at a specific position in the branch lineage, we find that alveoli form surprisingly early by direct budding of epithelial cells out from the airway stalk between enwrapping smooth muscle cells that rearrange into a ring of 3-5 myofibroblasts at the alveolar base. These alveolar entrance myofibroblasts are anatomically and developmentally distinct from myofibroblasts that form the thin fiber partitions of alveolar complexes (‘partitioning’ myofibroblasts). The nascent alveolar bud is led by a single alveolar type 2 (AT2) cell following selection from epithelial progenitors; a lateral inhibitory signal transduced by Notch ensures selection of only one cell so its trailing neighbor acquires AT1 fate and flattens into the cup-shaped wall of the alveolus. Our analysis suggests an elegant new model of alveolar patterning and formation that provides the foundation for understanding the cellular and molecular basis of alveolar diseases and regeneration. One Sentence Summary We report a direct budding mechanism of alveolar development distinct from the classical model of subdivision (‘septation’) of large air sacs.
16
Citation1
0
Save
2

Alveolar cell fate selection and lifelong maintenance of AT2 cells by FGF signaling

Douglas Brownfield et al.Oct 24, 2023
+3
E
A
D
Summary The lung’s gas exchange surface comprises thin alveolar type 1 (AT1) cells and cuboidal surfactant-secreting AT2 cells that are corrupted in some of the most common and deadly diseases including adenocarcinoma, emphysema, and SARS/Covid-19. These cells arise from an embryonic progenitor whose development into an AT1 or AT2 cell is thought to be dictated by differential mechanical forces. Here we show the critical determinant is FGF signaling. FGF Receptor 2 (Fgfr2) is expressed in mouse progenitors then restricts to nascent AT2 cells and remains on throughout life. Its ligands are expressed in surrounding mesenchyme and can, in the absence of differential mechanical cues, induce purified, uncommitted E16.5 progenitors to form alveolus-like structures with intermingled AT2 and AT1 cells. FGF signaling directly and cell autonomously specifies AT2 fate; progenitors lacking Fgfr2 in vitro and in vivo exclusively acquire AT1 fate. Fgfr2 loss in AT2 cells perinatally results in reprogramming to AT1 fate, whereas loss or inhibition later in life immediately triggers AT2 apoptosis followed by a compensatory regenerative response. We propose Fgfr2 signaling directly selects AT2 fate during development, induces a cell non-autonomous secondary signal for AT1 fate, and stays on throughout life to continuously maintain healthy AT2 cells. One Sentence Summary FGF signaling induces and distinguishes the two cell types of the lung’s gas exchange surface, and the pathway remains on throughout life to maintain one that can be transformed into lung cancer or targeted in the deadly form of SARS/Covid-19.
Load More