AW
Aaron Wilk
Author with expertise in Coronavirus Disease 2019
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
10,596
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A single-cell atlas of the peripheral immune response in patients with severe COVID-19

Aaron Wilk et al.Jun 8, 2020
There is an urgent need to better understand the pathophysiology of Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, which has infected more than three million people worldwide1. Approximately 20% of patients with COVID-19 develop severe disease and 5% of patients require intensive care2. Severe disease has been associated with changes in peripheral immune activity, including increased levels of pro-inflammatory cytokines3,4 that may be produced by a subset of inflammatory monocytes5,6, lymphopenia7,8 and T cell exhaustion9,10. To elucidate pathways in peripheral immune cells that might lead to immunopathology or protective immunity in severe COVID-19, we applied single-cell RNA sequencing (scRNA-seq) to profile peripheral blood mononuclear cells (PBMCs) from seven patients hospitalized for COVID-19, four of whom had acute respiratory distress syndrome, and six healthy controls. We identify reconfiguration of peripheral immune cell phenotype in COVID-19, including a heterogeneous interferon-stimulated gene signature, HLA class II downregulation and a developing neutrophil population that appears closely related to plasmablasts appearing in patients with acute respiratory failure requiring mechanical ventilation. Importantly, we found that peripheral monocytes and lymphocytes do not express substantial amounts of pro-inflammatory cytokines. Collectively, we provide a cell atlas of the peripheral immune response to severe COVID-19. Single-cell transcriptomic analysis identifies changes in peripheral immune cells in seven hospitalized patients with COVID-19, including HLA class II downregulation, a heterogeneous interferon-stimulated gene signature and low pro-inflammatory cytokine gene expression in monocytes and lymphocytes.
50

Comparative analysis of cell-cell communication at single-cell resolution

Aaron Wilk et al.Feb 7, 2022
Inference of cell-cell communication (CCC) from single-cell RNA-sequencing data is a powerful technique to uncover putative axes of multicellular coordination, yet existing methods perform this analysis at the level of the cell type or cluster, discarding single-cell level information. Here we present Scriabin â€" a flexible and scalable framework for comparative analysis of CCC at single-cell resolution. We leverage multiple published datasets to show that Scriabin recovers expected CCC edges and use spatial transcriptomic data, genetic perturbation screens, and direct experimental manipulation of receptor-ligand interactions to validate that the recovered edges are biologically meaningful. We then apply Scriabin to uncover co-expressed programs of CCC from atlas-scale datasets, validating known communication pathways required for maintaining the intestinal stem cell niche and revealing species-specific communication pathways. Finally, we utilize single-cell communication networks calculated using Scriabin to follow communication pathways that operate between timepoints in longitudinal datasets, highlighting bystander cells as important initiators of inflammatory reactions in acute SARS-CoV-2 infection. Our approach represents a broadly applicable strategy to leverage single-cell resolution data maximally toward uncovering CCC circuitry and rich niche-phenotype relationships in health and disease.
50
Citation10
0
Save
6

Activated interstitial macrophages are a predominant target of viral takeover and focus of inflammation in COVID-19 initiation in human lung

Ting-Hsuan Wu et al.May 10, 2022
ABSTRACT Early stages of deadly respiratory diseases such as COVID-19 have been challenging to elucidate due to lack of an experimental system that recapitulates the cellular and structural complexity of the human lung while allowing precise control over disease initiation and systematic interrogation of molecular events at cellular resolution. Here we show healthy human lung slices cultured ex vivo can be productively infected with SARS-CoV-2, and the cellular tropism of the virus and its distinct and dynamic effects on host cell gene expression can be determined by single cell RNA sequencing and reconstruction of “infection pseudotime” for individual lung cell types. This revealed that the prominent SARS-CoV-2 target is a population of activated interstitial macrophages (IMs), which as infection proceeds accumulate thousands of viral RNA molecules per cell, comprising up to 60% of the cellular transcriptome and including canonical and novel subgenomic RNAs. During viral takeover of IMs, there is cell-autonomous induction of a pro-fibrotic program ( TGFB1 , SPP1 ), and an inflammatory program characterized by the early interferon response, chemokines ( CCL2 , 7, 8 , 13, CXCL10 ) and cytokines ( IL6, IL10) , along with destruction of cellular architecture and formation of dense viral genomic RNA bodies revealed by super-resolution microscopy. In contrast, alveolar macrophages (AMs) showed neither viral takeover nor induction of a substantial inflammatory response, although both purified AMs and IMs supported production of infectious virions. Spike-dependent viral entry into AMs was neutralized by blockade of ACE2 or Sialoadhesin/CD169, whereas IM entry was neutralized only by DC-SIGN/CD209 blockade. These results provide a molecular characterization of the initiation of COVID-19 in human lung tissue, identify activated IMs as a prominent site of viral takeover and focus of inflammation and fibrosis, and suggest therapeutic targeting of the DC-SIGN/CD209 entry mechanism to prevent IM infection, destruction and early pathology in COVID-19 pneumonia. Our approach can be generalized to define the initiation program and evaluate therapeutics for any human lung infection at cellular resolution.
6
Citation10
5
Save
1

CRISPRa screening with real world evidence identifies potassium channels as neuronal entry factors and druggable targets for SARS-CoV-2

Chengkun Wang et al.Jul 1, 2021
Abstract Although vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been successful, there are no good treatments for those who are actively infected. While SARS-CoV-2 primarily infects the respiratory tract, clinical evidence indicates that cells from sensory organs and the brain are also susceptible to infection. While many patients suffer from diverse neurological symptoms, the virus’s neuronal entry remains mysterious. To discover host factors involved in SARS-CoV-2 viral entry, we performed CRISPR activation (CRISPRa) screens targeting all 6000+ human membrane proteins in cells with and without overexpression of ACE2 using Spike-pseudotyped lentiviruses. This unbiased gain-of-function screening identified both novel and previously validated host factors. Notably, newly found host factors have high expression in neuronal and immune cells, including potassium channel KCNA6, protease LGMN, and MHC-II component HLA-DPB1. We validated these factors using replication-competent SARS-CoV-2 infection assays. Notably, the overexpression of KCNA6 led to a marked increase in infection even in cells with undetectable levels of ACE2 expression. Analysis of human olfactory epithelium scRNA-seq data revealed that OLIG2+/TUJ1+ cells--previously identified as sites of infection in COVID-19 autopsy studies-- have high KCNA6 expression and minimal levels of ACE2. The presence of KCNA6 may thus explain sensory/neuronal aspects of COVID-19 symptoms. Further, we demonstrate that FDA-approved compound dalfampridine, an inhibitor of KCNA-family potassium channels, suppresses viral entry in a dosage-dependent manner. Finally, we identified common prescription drugs likely to modulate the top identified host factors, and performed a retrospective analysis of insurance claims of ~8 million patients. This large cohort study revealed a statistically significant association between top drug classes, particularly those targeting potassium channels, and COVID-19 severity. Taken together, the potassium channel KCNA6 facilitates neuronal entry of SARS-CoV-2 and is a promising target for drug repurposing and development.
1
Citation7
0
Save
1

Pro-inflammatory feedback loops define immune responses to pathogenic lentivirus infection

Aaron Wilk et al.Mar 19, 2023
ABSTRACT HIV causes chronic inflammation and AIDS in humans, though the rate of disease progression varies between individuals. Similarly, simian lentiviruses vary in their pathogenicity based on characteristics of both the host (simian species) and virus strain. Here, we profile immune responses in pig-tailed macaques infected with variants of SIV that differ in virulence to understand the immune mechanisms underlying lentiviral pathogenicity. Compared to a minimally pathogenic lentiviral variant, infection with a highly pathogenic variant results in a more delayed, broad, and sustained activation of inflammatory pathways, including an extensive global interferon signature. Conversely, individual cells infected with highly pathogenic lentivirus upregulated fewer interferon-stimulated genes at a lower magnitude, indicating that highly pathogenic lentivirus has evolved to partially escape from interferon responses. Further, we identified distinct gene co-expression patterns and cell-cell communication pathways that implicate CXCL10 and CXCL16 as important molecular drivers of inflammatory pathways specifically in response to highly pathogenic lentivirus infection. Immune responses to highly pathogenic lentivirus infection are characterized by amplifying regulatory circuits of pro-inflammatory cytokines with dense longitudinal connectivity. Our work presents a model of lentiviral pathogenicity where failures in early viral control mechanisms lead to delayed, sustained, and amplifying pro-inflammatory circuits, which has implications for other viral infections with highly variable disease courses.
1
Citation1
0
Save
0

Charge-Altering Releasable Transporters enable specific phenotypic manipulation of resting primary natural killer cells

Aaron Wilk et al.Mar 3, 2020
Natural killer (NK) cells are capable of rapid and robust cytotoxicity, making them excellent tools for immunotherapy. However, their recalcitrance to standard transfection techniques has limited both mechanistic studies and clinical applications. Current approaches for NK cell manipulation rely on viral transduction or methods requiring NK cell activation, which can alter NK cell function. Here, we report that non-viral Charge-Altering Releasable Transporters (CARTs) efficiently transfect primary human NK cells with mRNA without relying on NK cell activation. Compared to electroporation, CARTs transfect NK cells two orders of magnitude more efficiently, better preserve cell viability, and cause minimal reconfiguration of NK cell phenotype and function. Finally, we use CARTs to generate highly cytotoxic primary human chimeric antigen receptor NK cells, indicating potential therapeutic utility of this technique. To our knowledge, CARTs represent the first efficacious transfection technique for resting primary NK cells that preserves NK cell phenotype, and can drive new biological discoveries and clinical applications of this understudied lymphocyte subset.
Load More