PS
Peter Smibert
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
New York Genome Center, 10X Genomics (United States), Icahn School of Medicine at Mount Sinai
+ 6 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(74% Open Access)
Cited by:
190
h-index:
33
/
i10-index:
51
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
43

A genome-scale screen for synthetic drivers of T cell proliferation

Mateusz Legut et al.Mar 16, 2022
+11
M
Z
M
The engineering of autologous patient T cells for adoptive cell therapies has revolutionized the treatment of several types of cancer1. However, further improvements are needed to increase response and cure rates. CRISPR-based loss-of-function screens have been limited to negative regulators of T cell functions2–4 and raise safety concerns owing to the permanent modification of the genome. Here we identify positive regulators of T cell functions through overexpression of around 12,000 barcoded human open reading frames (ORFs). The top-ranked genes increased the proliferation and activation of primary human CD4+ and CD8+ T cells and their secretion of key cytokines such as interleukin-2 and interferon-γ. In addition, we developed the single-cell genomics method OverCITE-seq for high-throughput quantification of the transcriptome and surface antigens in ORF-engineered T cells. The top-ranked ORF—lymphotoxin-β receptor (LTBR)—is typically expressed in myeloid cells but absent in lymphocytes. When overexpressed in T cells, LTBR induced profound transcriptional and epigenomic remodelling, leading to increased T cell effector functions and resistance to exhaustion in chronic stimulation settings through constitutive activation of the canonical NF-κB pathway. LTBR and other highly ranked genes improved the antigen-specific responses of chimeric antigen receptor T cells and γδ T cells, highlighting their potential for future cancer-agnostic therapies5. Our results provide several strategies for improving next-generation T cell therapies by the induction of synthetic cell programmes. A genome-scale gain-of-function screen using overexpression of nearly 12,000 open reading frames (ORFs) identifies positive regulators of human T cell function and suggests that ORF-based screens could be applied clinically to improve T cell therapies.
190

Discovery of target genes and pathways of blood trait loci using pooled CRISPR screens and single cell RNA sequencing

John Morris et al.Oct 24, 2023
+10
J
Z
J
Abstract The majority of variants associated with complex traits and common diseases identified by genome-wide association studies (GWAS) map to noncoding regions of the genome with unknown regulatory effects in cis and trans . By leveraging biobank-scale GWAS data, massively parallel CRISPR screens and single cell transcriptome sequencing, we discovered target genes of noncoding variants for blood trait loci. The closest gene was often the target gene, but this was not always the case. We also identified trans -effects networks of noncoding variants when cis target genes encoded transcription factors, such as GFI1B and NFE2 . We observed that GFI1B trans -target genes were enriched for GFI1B binding sites and fine-mapped GWAS variants, and expressed in human bone marrow progenitor cells, suggesting that GFI1B acts as a master regulator of blood traits. This platform will enable massively parallel assays to catalog the target genes of human noncoding variants in both cis and trans .
190
Paper
Citation17
0
Save
198

Scalable, multimodal profiling of chromatin accessibility and protein levels in single cells

Eleni Mimitou et al.Oct 24, 2023
+13
K
C
E
ABSTRACT Recent technological advances have enabled massively parallel chromatin profiling with s ingle- c ell A ssay for T ransposase A ccessible C hromatin by seq uencing (scATAC-seq) in thousands of individual cells. Here, we extend these approaches and present A TAC with S elect A ntigen P rofiling by seq uencing, ASAP-seq, a tool to simultaneously profile accessible chromatin and protein levels in thousands of single cells. Our approach pairs sparse scATAC-seq data with robust detection of hundreds of cell surface and intracellular protein markers and optional capture of mitochondrial DNA (mtDNA) for clonal tracking, thus concomitantly capturing three distinct modalities in single cells. Importantly, ASAP-seq uses a novel bridging approach that repurposes antibody:oligo conjugates designed for existing technologies that pair protein measurements with single cell RNA-seq. We demonstrate the utility of ASAP-seq by revealing coordinated and distinct changes in chromatin, RNA, and surface proteins during native hematopoietic differentiation, peripheral blood mononuclear cell stimulation, and as a combinatorial decoder and reporter of multiplexed perturbations in primary T cells.
198
Citation16
0
Save
202

Direct detection of RNA modifications and structure using single molecule nanopore sequencing

William Stephenson et al.Oct 24, 2023
+3
S
R
W
ABSTRACT Many methods exist to detect RNA modifications by short-read sequencing, relying on either antibody enrichment of transcripts bearing modified bases or mutational profiling approaches which require conversion to cDNA. Endogenous modifications are present on several major classes of RNA including tRNA, rRNA and mRNA and can modulate diverse biological processes such as genetic recoding, mRNA export and RNA folding. In addition, exogenous modifications can be introduced to RNA molecules to reveal RNA structure and dynamics. Limitations on read length and library size inherent in short-read-based methods dissociate modifications from their native context, preventing single molecule analysis and modification phasing. Here we demonstrate direct RNA nanopore sequencing to detect endogenous and exogenous RNA modifications over long sequence distance at the single molecule level. We demonstrate comprehensive detection of endogenous modifications in E. coli and S. cerevisiae ribosomal RNA (rRNA) using current signal deviations. Notably 2’-O-methyl (Nm) modifications generated a discernible shift in current signal and event level dwell times. We show that dwell times are mediated by the RNA motor protein which sits atop the nanopore. Further, we characterize a recently described small adduct-generating 2’-O-acylation reagent, acetylimidazole (AcIm) for exogenously labeling flexible nucleotides in RNA. Finally, we demonstrate the utility of AcIm for single molecule RNA structural probing using nanopore sequencing. Graphical abstract
202
Paper
Citation13
0
Save
114

Characterizing the molecular regulation of inhibitory immune checkpoints with multi-modal single-cell screens

Efthymia Papalexi et al.Oct 24, 2023
+7
A
E
E
ABSTRACT The expression of inhibitory immune checkpoint molecules such as PD-L1 is frequently observed in human cancers and can lead to the suppression of T cell-mediated immune responses. Here we apply ECCITE-seq, a technology which combines pooled CRISPR screens with single-cell mRNA and surface protein measurements, to explore the molecular networks that regulate PD-L1 expression. We also develop a computational framework, mixscape , that substantially improves the signal-to-noise ratio in single-cell perturbation screens by identifying and removing confounding sources of variation. Applying these tools, we identify and validate regulators of PD-L1 , and leverage our multi-modal data to identify both transcriptional and post-transcriptional modes of regulation. In particular, we discover that the kelch-like protein KEAP1 and the transcriptional activator NRF2 , mediate levels of PD-L1 upregulation after IFNγ stimulation. Our results identify a novel mechanism for the regulation of immune checkpoints and present a powerful analytical framework for the analysis of multi-modal single-cell perturbation screens.
114
Citation10
0
Save
0

High throughput droplet single-cell Genotyping of Transcriptomes (GoT) reveals the cell identity dependency of the impact of somatic mutations

Anna Nam et al.May 6, 2020
+16
R
K
A
Abstract Defining the transcriptomic identity of clonally related malignant cells is challenging in the absence of cell surface markers that distinguish cancer clones from one another or from admixed non-neoplastic cells. While single-cell methods have been devised to capture both the transcriptome and genotype, these methods are not compatible with droplet-based single-cell transcriptomics, limiting their throughput. To overcome this limitation, we present single-cell Genotyping of Transcriptomes (GoT), which integrates cDNA genotyping with high-throughput droplet-based single-cell RNA-seq. We further demonstrate that multiplexed GoT can interrogate multiple genotypes for distinguishing subclonal transcriptomic identity. We apply GoT to 26,039 CD34 + cells across six patients with myeloid neoplasms, in which the complex process of hematopoiesis is corrupted by CALR -mutated stem and progenitor cells. We define high-resolution maps of malignant versus normal hematopoietic progenitors, and show that while mutant cells are comingled with wildtype cells throughout the hematopoietic progenitor landscape, their frequency increases with differentiation. We identify the unfolded protein response as a predominant outcome of CALR mutations, with significant cell identity dependency. Furthermore, we identify that CALR mutations lead to NF-κB pathway upregulation specifically in uncommitted early stem cells. Collectively, GoT provides high-throughput linkage of single-cell genotypes with transcriptomes and reveals that the transcriptional output of somatic mutations is heavily dependent on the native cell identity.
0
Citation9
0
Save
1

Scalable pooled CRISPR screens with single-cell chromatin accessibility profiling

Noa Liscovitch‐Brauer et al.Oct 24, 2023
+10
J
A
N
Abstract Pooled CRISPR screens have been used to identify genes responsible for specific phenotypes and diseases, and, more recently, to connect genetic perturbations with multi-dimensional gene expression profiles. Here, we describe a method to link genome-wide chromatin accessibility to genetic perturbations in single cells. This scalable, cost-effective method combines pooled CRISPR perturbations with a single-cell combinatorial indexing assay for transposase-accessible chromatin (CRISPR-sciATAC). Using a human and mouse species-mixing experiment, we show that CRISPR-sciATAC separates single cells with a low doublet rate. Then, in human myelogenous leukemia cells, we apply CRISPR-sciATAC to target 21 chromatin-related genes that are frequently mutated in cancer and 84 subunits and cofactors of chromatin remodeling complexes, generating chromatin accessibility data for ~30,000 single cells. Using this large-scale atlas, we correlate loss of specific chromatin remodelers with changes in accessibility — globally and at the binding sites of individual transcription factors. For example, we show that loss of the H3K27 methyltransferase EZH2 leads to increased accessibility at heterochromatic regions involved in embryonic development and triggers expression of multiple genes in the HOXA and HOXD clusters. At a subset of regulatory sites, we also analyze dynamic changes in nucleosome spacing upon loss of chromatin remodelers. CRISPR-sciATAC is a high-throughput, low-cost single-cell method that can be applied broadly to study the role of genetic perturbations on chromatin in normal and disease states.
1
Citation7
0
Save
244

Characterizing cellular heterogeneity in chromatin state with scCUT&Tag-pro

Bingjie Zhang et al.Oct 24, 2023
+5
E
A
B
Abstract New technologies that profile chromatin modifications at single-cell resolution offer enormous promise for functional genomic characterization. However, the sparsity of these measurements and the challenge of integrating multiple binding maps represent significant challenges. Here we introduce scCUT&Tag-pro, a multimodal assay for profiling protein-DNA interactions coupled with the abundance of surface proteins in single cells. In addition, we introduce scChromHMM, which integrates data from multiple experiments to infer and annotate chromatin states based on combinatorial histone modification patterns. We apply these tools to perform an integrated analysis across nine different molecular modalities in circulating human immune cells. We demonstrate how these two approaches can characterize dynamic changes in the function of individual genomic elements across both discrete cell states and continuous developmental trajectories, nominate associated motifs and regulators that establish chromatin states, and identify extensive and cell type-specific regulatory priming. Finally, we demonstrate how our integrated reference can serve as a scaffold to map and improve the interpretation of additional scCUT&Tag datasets.
244
Citation5
0
Save
172

Improving oligo-conjugated antibody signal in multimodal single-cell analysis

Terkild Buus et al.Oct 24, 2023
+7
E
A
T
Abstract Simultaneous measurement of surface proteins and gene expression within single cells using oligo-conjugated antibodies offers high resolution snapshots of complex cell populations. Signal from oligo-conjugated antibodies is quantified by high-throughput sequencing and is highly scalable and sensitive. In this study, we investigated the response of oligo-conjugated antibodies towards four variables: Concentration, staining volume, cell number at staining, and tissue. We find that staining with recommended antibody concentrations cause unnecessarily high background and that concentrations can be drastically reduced without loss of biological information. Reducing volume only affects antibodies targeting abundant epitopes used at low concentrations and is counteracted by reducing cell numbers. Adjusting concentrations increases signal, lowers background and reduces costs. Background signal can account for a major fraction of the total sequencing and is primarily derived from antibodies used at high concentrations. Together, this study provides new insight into the titration response and background of oligo-conjugated antibodies and offers concrete guidelines on how such panels can be improved. Impact statement Oligo-conjugated antibodies are a powerful tool but require thorough optimization to reduce background signal, increase sensitivity, and reduce sequencing costs.
172
Citation5
0
Save
237

Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq

Hans‐Hermann Wessels et al.Oct 24, 2023
+7
E
A
H
Pooled CRISPR screens coupled with single-cell RNA-sequencing have enabled systematic interrogation of gene function and regulatory networks. Here, we introduce Cas13 RNA Perturb-seq (CaRPool-seq) which leverages the RNA-targeting CRISPR/Cas13d system and enables efficient combinatorial perturbations alongside multimodal single-cell profiling. CaRPool-seq encodes multiple perturbations on a cleavable array which is associated with a detectable barcode sequence, allowing for the simultaneous targeting of multiple genes. We compared CaRPool-seq to existing Cas9-based methods, highlighting its unique strength to efficiently profile combinatorially perturbed cells. Finally, we apply CaRPool-seq to perform multiplexed combinatorial perturbations of myeloid differentiation regulators in an acute myeloid leukemia (AML) model system and identify extensive interactions between different chromatin regulators that can enhance or suppress AML differentiation phenotypes.
237
Paper
Citation3
0
Save
Load More