KS
Kelly Street
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Keck Hospital of USC, University of Southern California, Southern California University for Professional Studies
+ 5 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
425
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types

Zizhen Yao et al.May 6, 2020
+80
F
H
Z
Abstract Single cell transcriptomics has transformed the characterization of brain cell identity by providing quantitative molecular signatures for large, unbiased samples of brain cell populations. With the proliferation of taxonomies based on individual datasets, a major challenge is to integrate and validate results toward defining biologically meaningful cell types. We used a battery of single-cell transcriptome and epigenome measurements generated by the BRAIN Initiative Cell Census Network (BICCN) to comprehensively assess the molecular signatures of cell types in the mouse primary motor cortex (MOp). We further developed computational and statistical methods to integrate these multimodal data and quantitatively validate the reproducibility of the cell types. The reference atlas, based on more than 600,000 high quality single-cell or -nucleus samples assayed by six molecular modalities, is a comprehensive molecular account of the diverse neuronal and non-neuronal cell types in MOp. Collectively, our study indicates that the mouse primary motor cortex contains over 55 neuronal cell types that are highly replicable across analysis methods, sequencing technologies, and modalities. We find many concordant multimodal markers for each cell type, as well as thousands of genes and gene regulatory elements with discrepant transcriptomic and epigenomic signatures. These data highlight the complex molecular regulation of brain cell types and will directly enable design of reagents to target specific MOp cell types for functional analysis.
0
Citation45
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
30

Trajectory inference across multiple conditions with condiments: differential topology, progression, differentiation, and expression

Hector Bézieux et al.Oct 24, 2023
S
K
K
H
Abstract In single-cell RNA-sequencing (scRNA-seq), gene expression is assessed individually for each cell, allowing the investigation of developmental processes, such as embryogenesis and cellular differentiation and regeneration, at unprecedented resolutions. In such dynamic biological systems, grouping cells into discrete groups is not reflective of the biology. Cellular states rather form a continuum, e.g., for the differentiation of stem cells into mature cell types. This process is often represented via a trajectory in a reduced-dimensional representation of the scRNA-seq dataset. While many methods have been suggested for trajectory inference, it is often unclear how to handle multiple biological groups or conditions, e.g., inferring and comparing the differentiation trajectories of wild-type and knock-out stem cell populations. In this manuscript, we present a method for the estimation and downstream interpretation of cell trajectories across multiple conditions. Our framework allows the interpretation of differences between conditions at the trajectory, cell population, and gene expression levels. We start by integrating datasets from multiple conditions into a single trajectory. By comparing the conditions along the trajectory’s path, we can detect large-scale changes, indicative of differential progression. We also demonstrate how to detect subtler changes by finding genes that exhibit different behaviors between these conditions along a differentiation path.
30
Citation13
0
Save
0

Improving replicability in single-cell RNA-Seq cell type discovery with Dune

Hector Bézieux et al.May 7, 2020
+7
S
K
H
Single-cell transcriptome sequencing (scRNA-Seq) has allowed many new types of investigations at unprecedented and unique levels of resolution. Among the primary goals of scRNA-Seq is the classification of cells into potentially novel cell types. Many approaches build on the existing clustering literature to develop tools specific to single-cell applications. However, almost all of these methods rely on heuristics or user-supplied parameters to control the number of clusters identified. This affects both the resolution of the clusters within the original dataset as well as their replicability across datasets. While many recommendations exist to select these tuning parameters, most of them are quite ad hoc. In general, there is little assurance that any given set of parameters will represent an optimal choice in the ever-present trade-off between cluster resolution and replicability. For instance, it may be the case that another set of parameters will result in more clusters that are also more replicable, or in fewer clusters that are also less replicable.Here, we propose a new method called Dune for optimizing the trade-off between the resolution of the clusters and their replicability across datasets. Our method takes as input a set of clustering results on a single dataset, derived from any set of clustering algorithms and associated tuning parameters, and iteratively merges clusters within partitions in order to maximize their concordance between partitions. As demonstrated on a variety of scRNA-Seq datasets from different platforms, Dune outperforms existing techniques, that rely on hierarchical merging for reducing the number of clusters, in terms of replicability of the resultant merged clusters. It provides an objective approach for identifying replicable consensus clusters most likely to represent common biological features across multiple datasets.
1

Normalization benchmark of ATAC-seq datasets shows the importance of accounting for GC-content effects

Koen Berge et al.Oct 24, 2023
+4
H
H
K
Abstract Modern assays have enabled high-throughput studies of epigenetic regulation of gene expression using DNA sequencing. In particular, the assay for transposase-accessible chromatin using sequencing (ATAC-seq) allows the study of chromatin configuration for an entire genome. Despite the gain in popularity of the assay, there have been limited studies investigating the analytical challenges related to ATAC-seq data, and most studies leverage tools developed for bulk transcriptome sequencing (RNA-seq). Here, we show that GC-content effects are omnipresent in ATAC-seq datasets. Since the GC-content effects are sample-specific, they can bias downstream analyses such as clustering and differential accessibility analysis. We introduce a normalization method based on smooth-quantile normalization within GC-content bins, and evaluate it together with eleven different normalization procedures on eight public ATAC-seq datasets. Our work clearly shows that accounting for GC-content effects in the normalization is crucial for common downstream ATAC-seq data analyses, leading to improved accuracy and interpretability of the results. Using two case studies, we show that exploratory data analysis is essential to guide the choice of an appropriate normalization method for a given dataset.
0

Trajectory-based differential expression analysis for single-cell sequencing data

Koen Berge et al.May 6, 2020
+5
K
H
K
Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression levels during biological processes such as the cell cycle, cell type differentiation, and cellular activation. Downstream of trajectory inference, it is vital to discover genes that are associated with the lineages in the trajectory to illuminate the underlying biological processes. Furthermore, genes that are differentially expressed between developmental/activational lineages might be highly relevant to further unravel the system under study. Current data analysis procedures, however, typically cluster cells and assess differential expression between the clusters, which fails to exploit the continuous resolution provided by trajectory inference to its full potential. The few available non-cluster-based methods only assess broad differences in gene expression between lineages, hence failing to pinpoint the exact types of divergence. We introduce a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of (i) within-lineage differential expression by detecting associations between gene expression and pseudotime over an entire lineage or by comparing gene expression between points/regions within the lineage and (ii) between-lineage differential expression by comparing gene expression between lineages over the entire lineages or at specific points/regions. By incorporating observation-level weights, the model additionally allows to account for zero inflation, commonly observed in single-cell RNA-seq data from full-length protocols. We evaluate the method on simulated and real datasets from droplet-based and full-length protocols, and show that the flexible inference framework is capable of yielding biological insights through a clear interpretation of the data.
0

Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics

Kelly Street et al.May 6, 2020
+5
R
D
K
Single-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. These methods can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a number of statistical and computational methods have been proposed for analyzing cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve. Here, we introduce a novel method, Slingshot, for inferring multiple developmental lineages from single-cell gene expression data. Slingshot is a uniquely robust and flexible tool for inferring developmental lineages and ordering cells to reflect continuous, branching processes.
0

Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia

David Brann et al.May 6, 2020
+22
C
T
D
A subset of COVID-19 patients exhibit altered olfactory function. Here we analyze bulk and single cell RNA-Seq datasets to identify cell types in the olfactory epithelium and olfactory bulb that express cell entry molecules that mediate infection by SARS-CoV-2 (CoV-2), the causal agent in COVID-19. We find that samples from whole olfactory mucosa in species including mouse and human express two key genes involved in CoV-2 entry, ACE2 and TMPRSS2. However, neither olfactory sensory neurons nor olfactory bulb neurons express these genes, which are instead expressed in support cells, stem cells, and perivascular cells. These findings suggest that CoV-2 infection of non-neuronal cell types leads to anosmia and related disturbances in odor perception in COVID-19 patients.One Sentence Summary Analysis of new and previously published single-cell sequencing datasets reveals that the SARS-CoV2 receptor ACE2 is expressed in olfactory support cells, stem cells and perivascular cells — but not in neurons — suggesting mechanisms through which the COVID-19 syndrome could lead to olfactory dysfunction.### Competing Interest StatementDL is an employee of Mars, Inc. None of the other authors have competing interests to declare.
0

A Latent Activated Olfactory Stem Cell State Revealed by Single Cell Transcriptomic and Epigenomic Profiling

Koen Berge et al.Jun 3, 2024
+6
D
H
K
The olfactory epithelium is one of the few regions of the nervous system that sustains neurogenesis throughout life. Its experimental accessibility makes it especially tractable for studying molecular mechanisms that drive neural regeneration after injury-induced cell death. In this study, we used single cell sequencing to identify major regulatory players in determining olfactory epithelial stem cell fate after acute injury. We combined gene expression and accessible chromatin profiles of individual lineage traced olfactory stem cells to predict transcription factor activity specific to different lineages and stages of recovery. We further identified a discrete stem cell state that appears poised for activation, characterized by accessible chromatin around wound response and lineage specific genes prior to their later expression in response to injury. Together these results provide evidence that a subset of quiescent olfactory epithelial stem cells are epigenetically primed to support injury-induced regeneration.