LY
Lisa Yanek
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
28
(36% Open Access)
Cited by:
2,041
h-index:
75
/
i10-index:
198
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

Guðmar Þorleifsson et al.Dec 14, 2008
+32
D
G
G
0
Citation1,343
0
Save
0

Many sequence variants affecting diversity of adult human height

Daníel Guðbjartsson et al.Apr 6, 2008
+34
H
G
D
0
Citation661
0
Save
0

The Trans-Ancestral Genomic Architecture of Glycaemic Traits

Ji Chen et al.Jul 25, 2020
+411
J
T
J
Abstract Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P <5×10 -8 ), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
0
Citation10
0
Save
1

Clonal hematopoiesis is driven by aberrant activation of TCL1A

Joshua Weinstock et al.Dec 13, 2021
+109
A
N
J
Abstract A diverse set of driver genes, such as regulators of DNA methylation, RNA splicing, and chromatin remodeling, have been associated with pre-malignant clonal expansion of hematopoietic stem cells (HSCs). The factors mediating expansion of these mutant clones remain largely unknown, partially due to a paucity of large cohorts with longitudinal blood sampling. To circumvent this limitation, we developed and validated a method to infer clonal expansion rate from single timepoint data called PACER (passenger-approximated clonal expansion rate). Applying PACER to 5,071 persons with clonal hematopoiesis accurately recapitulated the known fitness effects due to different driver mutations. A genome-wide association study of PACER revealed that a common inherited polymorphism in the TCL1A promoter was associated with slower clonal expansion. Those carrying two copies of this protective allele had up to 80% reduced odds of having driver mutations in TET2, ASXL1, SF3B1, SRSF2 , and JAK2 , but not DNMT3A. TCL1A was not expressed in normal or DNMT3A -mutated HSCs, but the introduction of mutations in TET2 or ASXL1 by CRISPR editing led to aberrant expression of TCL1A and expansion of HSCs in vitro. These effects were abrogated in HSCs from donors carrying the protective TCL1A allele. Our results indicate that the fitness advantage of multiple common driver genes in clonal hematopoiesis is mediated through TCL1A activation. PACER is an approach that can be widely applied to uncover genetic and environmental determinants of pre-malignant clonal expansion in blood and other tissues.
1
Citation9
0
Save
0

Partial derivatives meta-analysis: pooled analyses when individual participant data cannot be shared

Hieab Adams et al.Feb 7, 2016
+52
L
H
H
Abstract Joint analysis of data from multiple studies in collaborative efforts strengthens scientific evidence, with the gold standard approach being the pooling of individual participant data (IPD). However, sharing IPD often has legal, ethical, and logistic constraints for sensitive or high-dimensional data, such as in clinical trials, observational studies, and large-scale omics studies. Therefore, meta-analysis of study-level effect estimates is routinely done, but this compromises on statistical power, accuracy, and flexibility. Here we propose a novel meta-analytical approach, named partial derivatives meta-analysis, that is mathematically equivalent to using IPD, yet only requires the sharing of aggregate data. It not only yields identical results as pooled IPD analyses, but also allows post-hoc adjustments for covariates and stratification without the need for site-specific re-analysis. Thus, in case that IPD cannot be shared, partial derivatives meta-analysis still produces gold standard results, which can be used to better inform guidelines and policies on clinical practice.
1

Rare coding variants in 35 genes associate with circulating lipid levels – a multi-ancestry analysis of 170,000 exomes

George Hindy et al.Dec 23, 2020
+185
M
P
G
Abstract Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency<1%) predicted damaging coding variation using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels. Ten of these: ALB , SRSF2 , JAK2, CREB3L3 , TMEM136 , VARS , NR1H3 , PLA2G12A , PPARG and STAB1 have not been implicated for lipid levels using rare coding variation in population-based samples. We prioritize 32 genes identified in array-based genome-wide association study (GWAS) loci based on gene-based associations, of which three: EVI5, SH2B3 , and PLIN1 , had no prior evidence of rare coding variant associations. Most of the associated genes showed evidence of association in multiple ancestries. Also, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes, and for genes closest to GWAS index single nucleotide polymorphisms (SNP). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.
1
Citation4
0
Save
1

Structural variation across 138,134 samples in the TOPMed consortium

Goo Jun et al.Jan 26, 2023
+87
M
A
G
Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.
1
Citation3
0
Save
14

A framework for detecting noncoding rare variant associations of large-scale whole-genome sequencing studies

Zilin Li et al.Nov 8, 2021
+59
S
H
Z
Abstract Large-scale whole-genome sequencing studies have enabled analysis of noncoding rare variants’ (RVs) associations with complex human traits. Variant set analysis is a powerful approach to study RV association, and a key component of it is constructing RV sets for analysis. However, existing methods have limited ability to define analysis units in the noncoding genome. Furthermore, there is a lack of robust pipelines for comprehensive and scalable noncoding RV association analysis. Here we propose a computationally-efficient noncoding RV association-detection framework that uses STAAR (variant-set test for association using annotation information) to group noncoding variants in gene-centric analysis based on functional categories. We also propose SCANG (scan the genome)-STAAR, which uses dynamic window sizes and incorporates multiple functional annotations, in a non-gene-centric analysis. We furthermore develop STAARpipeline to perform flexible noncoding RV association analysis, including gene-centric analysis as well as fixed-window-based and dynamic-window-based non-gene-centric analysis. We apply STAARpipeline to identify noncoding RV sets associated with four quantitative lipid traits in 21,015 discovery samples from the Trans-Omics for Precision Medicine (TOPMed) program and replicate several noncoding RV associations in an additional 9,123 TOPMed samples.
14
Citation2
0
Save
50

Whole genome sequence analysis of blood lipid levels in >66,000 individuals

Margaret Selvaraj et al.Oct 12, 2021
+84
D
M
M
Abstract Plasma lipids are heritable modifiable causal factors for coronary artery disease, the leading cause of death globally. Despite the well-described monogenic and polygenic bases of dyslipidemia, limitations remain in discovery of lipid-associated alleles using whole genome sequencing, partly due to limited sample sizes, ancestral diversity, and interpretation of potential clinical significance. Increasingly larger whole genome sequence datasets with plasma lipids coupled with methodologic advances enable us to more fully catalog the allelic spectrum for lipids. Here, among 66,329 ancestrally diverse (56% non-European ancestry) participants, we associate 428M variants from deep-coverage whole genome sequences with plasma lipids. Approximately 400M of these variants were not studied in prior lipids genetic analyses. We find multiple lipid-related genes strongly associated with plasma lipids through analysis of common and rare coding variants. We additionally discover several significantly associated rare non-coding variants largely at Mendelian lipid genes. Notably, we detect rare LDLR intronic variants associated with markedly increased LDL-C, similar to rare LDLR exonic variants. In conclusion, we conducted a systematic whole genome scan for plasma lipids expanding the alleles linked to lipids for multiple ancestries and characterize a clinically-relevant rare non-coding variant model for lipids.
50
Citation2
0
Save
0

A system for phenotype harmonization in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program

Adrienne Stilp et al.Jun 20, 2020
+74
J
L
A
Genotype-phenotype association studies often combine phenotype data from multiple studies to increase power. Harmonization of the data usually requires substantial effort due to heterogeneity in phenotype definitions, study design, data collection procedures, and data set organization. Here we describe a centralized system for phenotype harmonization that includes input from phenotype domain and study experts, quality control, documentation, reproducible results, and data sharing mechanisms. This system was developed for the National Heart, Lung and Blood Institute’s Trans-Omics for Precision Medicine (TOPMed) program, which is generating genomic and other omics data for >80 studies with extensive phenotype data. To date, 63 phenotypes have been harmonized across thousands of participants from up to 17 TOPMed studies per phenotype. We discuss the challenges faced in this undertaking and how they were addressed. The harmonized phenotype data and associated documentation have been submitted to National Institutes of Health data repositories for controlled-access by the scientific community. We also provide materials to facilitate future harmonization efforts by the community, which include (1) the code used to generate the 63 harmonized phenotypes, enabling others to reproduce, modify or extend these harmonizations to additional studies; and (2) results of labeling thousands of phenotype variables with controlled vocabulary terms.
0
Citation1
0
Save
Load More