SV
Scott Vrieze
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(50% Open Access)
Cited by:
7,552
h-index:
41
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Jeanne Savage et al.Jun 25, 2018
Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
16
Citation959
3
Save
0

A saturated map of common genetic variants associated with human height

Loïc Yengo et al.Oct 12, 2022
Abstract Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40–50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes 1 . Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel 2 ) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10–20% (14–24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.
0
Citation370
0
Save
1

Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits

Luke Evans et al.Apr 25, 2018
Multiple methods have been developed to estimate narrow-sense heritability, h2, using single nucleotide polymorphisms (SNPs) in unrelated individuals. However, a comprehensive evaluation of these methods has not yet been performed, leading to confusion and discrepancy in the literature. We present the most thorough and realistic comparison of these methods to date. We used thousands of real whole-genome sequences to simulate phenotypes under varying genetic architectures and confounding variables, and we used array, imputed, or whole genome sequence SNPs to obtain ‘SNP-heritability’ estimates. We show that SNP-heritability can be highly sensitive to assumptions about the frequencies, effect sizes, and levels of linkage disequilibrium of underlying causal variants, but that methods that bin SNPs according to minor allele frequency and linkage disequilibrium are less sensitive to these assumptions across a wide range of genetic architectures and possible confounding factors. These findings provide guidance for best practices and proper interpretation of published estimates. This analysis compares methods for estimating the heritability and genetic architecture of complex traits using whole-genome data. The results provide guidance for best practices and proper interpretation of published heritability estimates.
1
Citation232
0
Save
0

Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

Raymond Walters et al.Mar 10, 2018
Abstract Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest GWAS to date of DSM - IV diagnosed AD. Genome - wide data on 14,904 individuals with AD and 37,944 controls from 28 case / control and family - based studies were meta - analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). Independent, genome - wide significant effects of different ADH1B variants were identified in European (rs1229984; p = 9.8E - 13) and African ancestries (rs2066702; p = 2.2E - 9). Significant genetic correlations were observed with schizophrenia, ADHD, depression, and use of cigarettes and cannabis. There was only modest genetic correlation with alcohol consumption and inconsistent associations with problem drinking. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and non - pathological drinking behaviors.
0
Citation20
0
Save
3

A Saturated Map of Common Genetic Variants Associated with Human Height from 5.4 Million Individuals of Diverse Ancestries

Loïc Yengo et al.Jan 10, 2022
ABSTRACT Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse ancestries, that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering ~21% of the genome. The density of independent associations varies across the genome and the regions of elevated density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, associated regions, and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely explained by linkage disequilibrium and allele frequency differences within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than needed to implicate causal genes and variants. Overall, this study, the largest GWAS to date, provides an unprecedented saturated map of specific genomic regions containing the vast majority of common height-associated variants.
3
Citation16
0
Save
7

Polygenic Risk Score for Smoking is associated with Externalizing Psychopathology and Disinhibited Personality Traits but not Internalizing Psychopathology in Adolescence

Brian Hicks et al.Jul 30, 2020
Abstract Importance Large consortia of genome wide association studies have yielded more accurate polygenic risk scores (PRS) that aggregate the small effects of many genetic variants to characterize the genetic architecture of disorders and provide a personalized measure of genetic risk. Objective We examined whether a PRS for smoking measured genetic risk for general behavioral disinhibition by estimating its associations with externalizing and internalizing psychopathology and related personality traits. We examined these associations at multiple time points in adolescence using more refined phenotypes defined by stable characteristics across time and at young ages, which reduced potential confounds associated with cumulative exposure to substances and reverse causality. Methods Random intercept panel models were fit to symptoms of conduct disorder, oppositional defiant disorder, major depressive disorder (MDD), and teacher ratings of externalizing and internalizing problems and personality traits at ages 11, 14, and 17 years-old in the Minnesota Twin Family Study ( N = 3225). Results The smoking PRS had strong associations with the random intercept factors for all the externalizing measures (mean standardized β = .27), agreeableness ( β= −.22, 95% CI: −.28, −.16), and conscientiousness ( β= −.19, 95% CI: −.24, −.13), but was not significantly associated with the internalizing measures (mean β = .06) or extraversion ( β= .01, 95% CI: −.05, .07). After controlling for smoking at age 17, the associations with the externalizing measures (mean β = .13) and personality traits related to behavioral control (mean β = −.10) remained statistically significant. Conclusions and Relevance The smoking PRS measures genetic influences that contribute to a spectrum of phenotypes related to behavioral disinhibition including externalizing psychopathology and normal-range personality traits related to behavioral control, but not internalizing psychopathology. Continuing to identify the correlates and delineate the mechanisms of the genetic influences associated with disinhibition could have substantial impact in mitigating a variety of public health problems (e.g., mental health, academic achievement, criminality). Key Points Question Does a polygenic risk scores (PRS) for smoking measure genetic risk for behavioral disinhibition in general? Findings The smoking PRS was associated with externalizing psychopathology and personality traits related to behavioral control, but not internalizing psychopathology and extraversion during adolescence, even after controlling for smoking status. Meaning The smoking PRS measures genetic influences on behavioral disinhibition in general which is associated with a variety of important outcomes including mental health, academic success, and criminality.
7
Citation3
0
Save
32

Uncovering the Genetic Architecture of Broad Antisocial Behavior through a Genome-Wide Association Study Meta-analysis

Jorim Tielbeek et al.Oct 20, 2021
Despite the substantial heritability of antisocial behavior (ASB), specific genetic variants robustly associated with the trait have not been identified. The present study by the Broad Antisocial Behavior Consortium (BroadABC) meta-analyzed data from 25 discovery samples (N=85,359) and five independent replication samples (N = 8,058) with genotypic data and broad measures of ASB. We identified the first significant genetic associations with broad ASB, involving common intronic variants in the forkhead box protein P2 (FOXP2) gene (lead SNP rs12536335, P = 6.32 x 10-10). Furthermore, we observed intronic variation in Foxp2 and one of its targets (Cntnap2) distinguishing a mouse model of pathological aggression (BALB/cJ mice) from controls (the BALB/cByJ strain). The SNP-based heritability of ASB was 8.4% (s.e.= 1.2%). Polygenic-risk-score (PRS) analyses in independent samples revealed that the genetic risk for ASB was associated with several antisocial outcomes across the lifespan, including diagnosis of conduct disorder, official criminal convictions, and trajectories of antisocial development. We found substantial positive genetic correlations between ASB and depression (rg = 0.63), smoking (rg = 0.54) and insomnia (rg = 0.47) as well as negative correlations with indicators of life history (age at first birth (rg = -0.58), fathers age at death (rg = -0.54)) and years of schooling (rg = -0.46). Our findings provide a starting point towards identifying critical biosocial risk mechanisms for the development of ASB.
32
Citation2
0
Save
Load More