LL
Leonardo Lima
Author with expertise in Genome Evolution and Polyploidy in Plants
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,796
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
195

The complete sequence of a human genome

Sergey Nurk et al.Mar 31, 2022
+99
E
T
S
Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion–base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies.
195
Citation1,746
3
Save
546

The structure, function, and evolution of a complete human chromosome 8

Glennis Logsdon et al.Sep 8, 2020
+27
K
C
G
ABSTRACT The complete assembly of each human chromosome is essential for understanding human biology and evolution. Using complementary long-read sequencing technologies, we complete the first linear assembly of a human autosome, chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08 Mbp centromeric α-satellite array, a 644 kbp defensin copy number polymorphism important for disease risk, and an 863 kbp variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73 kbp hypomethylated region of diverse higher-order α-satellite enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. Using a dual long-read sequencing approach, we complete the assembly of the orthologous chromosome 8 centromeric regions in chimpanzee, orangutan, and macaque for the first time to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved specifically in the great ape ancestor, and the centromeric region evolved with a layered symmetry, with more ancient higher-order repeats located at the periphery adjacent to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated at least 2.2-fold, and this acceleration extends beyond the higher-order α-satellite into the flanking sequence.
546
Citation29
0
Save
166

Complete genomic and epigenetic maps of human centromeres

Nicolas Altemose et al.Jul 13, 2021
+56
A
G
N
Abstract Existing human genome assemblies have almost entirely excluded highly repetitive sequences within and near centromeres, limiting our understanding of their sequence, evolution, and essential role in chromosome segregation. Here, we present an extensive study of newly assembled peri/centromeric sequences representing 6.2% (189.9 Mb) of the first complete, telomere-to-telomere human genome assembly (T2T-CHM13). We discovered novel patterns of peri/centromeric repeat organization, variation, and evolution at both large and small length scales. We also found that inner kinetochore proteins tend to overlap the most recently duplicated subregions within centromeres. Finally, we compared chromosome X centromeres across a diverse panel of individuals and uncovered structural, epigenetic, and sequence variation at single-base resolution across these regions. In total, this work provides an unprecedented atlas of human centromeres to guide future studies of their complex and critical functions as well as their unique evolutionary dynamics. One-sentence summary Deep characterization of fully assembled human centromeres reveals their architecture and fine-scale organization, variation, and evolution.
166
Citation9
0
Save
100

From telomere to telomere: the transcriptional and epigenetic state of human repeat elements

Savannah Hoyt et al.Jul 12, 2021
+24
G
M
S
Abstract Mobile elements and highly repetitive genomic regions are potent sources of lineage-specific genomic innovation and fingerprint individual genomes. Comprehensive analyses of large, composite or arrayed repeat elements and those found in more complex regions of the genome require a complete, linear genome assembly. Here we present the first de novo repeat discovery and annotation of a complete human reference genome, T2T-CHM13v1.0. We identified novel satellite arrays, expanded the catalog of variants and families for known repeats and mobile elements, characterized new classes of complex, composite repeats, and provided comprehensive annotations of retroelement transduction events. Utilizing PRO-seq to detect nascent transcription and nanopore sequencing to delineate CpG methylation profiles, we defined the structure of transcriptionally active retroelements in humans, including for the first time those found in centromeres. Together, these data provide expanded insight into the diversity, distribution and evolution of repetitive regions that have shaped the human genome.
100
Citation8
0
Save
73

Recombination between heterologous human acrocentric chromosomes

Andrea Guarracino et al.Aug 15, 2022
+9
C
S
A
Abstract The short arms of the human acrocentric chromosomes 13, 14, 15, 21, and 22 share large homologous regions, including the ribosomal DNA repeats and extended segmental duplications (Floutsakou et al. 2013; van Sluis et al. 2019). While the complete assembly of these regions in the Telomere-to-Telomere consortium’s CHM13 provided a model of their homology (Nurk et al. 2022), it remained unclear if these patterns were ancestral or maintained by ongoing recombination exchange. Here, we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologs. Considering an all-to-all comparison of the high-quality human pangenome from the Human Pangenome Reference Consortium (HPRC) (Liao et al. 2022), we find that contigs from all of the acrocentric short arms form a community similar to those formed by single chromosomes or the sex chromosome pair. A variation graph (Garrison et al. 2018) constructed from centromere-spanning acrocentric contigs indicates the presence of regions where most contigs appear nearly identical between heterologous CHM13 acrocentrics. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the PHRs than in the corresponding short and long arms, indicating higher rates of recombination (N. Li and Stephens 2003; Huttley et al. 1999). The PHRs include sequences previously shown to lie at the breakpoint of Robertsonian translocations (Jarmuz-Szymczak et al. 2014), and we show that their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14, and 21. The ubiquity of signals of recombination between heterologous chromosomes seen in the HPRC draft pangenome’s acrocentric assemblies suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed cytogenetically fifty years ago (Hamerton et al. 1975).
73
Citation4
0
Save
3k

The complete sequence of a human genome

Sergey Nurk et al.May 27, 2021
+98
W
C
S
Abstract In 2001, Celera Genomics and the International Human Genome Sequencing Consortium published their initial drafts of the human genome, which revolutionized the field of genomics. While these drafts and the updates that followed effectively covered the euchromatic fraction of the genome, the heterochromatin and many other complex regions were left unfinished or erroneous. Addressing this remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium has finished the first truly complete 3.055 billion base pair (bp) sequence of a human genome, representing the largest improvement to the human reference genome since its initial release. The new T2T-CHM13 reference includes gapless assemblies for all 22 autosomes plus Chromosome X, corrects numerous errors, and introduces nearly 200 million bp of novel sequence containing 2,226 paralogous gene copies, 115 of which are predicted to be protein coding. The newly completed regions include all centromeric satellite arrays and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies for the first time.
12

Comparative analysis of 1.688 satellite DNA on D. melanogaster species subgroup provides new insights of its pervasive presence throughout both chromatin domains and reveals a recent horizontal transfer event.

Leonardo Lima et al.Mar 6, 2018
G
L
The 1.688 satellite DNA is present in the genome of Drosophila species from the melanogaster subgroup and has never been detected in species outside this subgroup. We investigated the presence and evolution of the 1.688 satDNA in all Drosophila genomes sequenced so far. Blast searches showed that 1.688 repeats are virtually confined to species from the melanogaster subgroup. Phylogenetic analysis of ~6,500 repeats extracted from D. melanogaster , D. simulans , D. sechellia , D. yakuba and D. erecta revealed the presence of 1.688 family on heterochromatin and euchromatin of all five species. Heterochromatic copies revealed a concerted mode of evolution and a species-specific pattern. Oppositely, euchromatic copies lack species-specific or array-specific pattern. Euchromatic arrays also showed a high number of insertions on 5Kb upstream/downstream of genes and in intronic regions. Unexpectedly, we found an array with at least three full 1.688 tandem repeats in the genome of D. willistoni . These repeats were highly similar to the ones present in the chromosome X of D. melanogaster , although both species have diverged from each other more than 35Mya, suggesting that 1.688 repeats from the X chromosome of D. melanogaster moved to D. willistoni by a recent horizontal transfer event.