JF
Jonas Franz
Author with expertise in Neurological Manifestations of COVID-19 Infection
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
2,935
h-index:
18
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity

Ludovico Cantuti‐Castelvetri et al.Oct 20, 2020
+26
M
L
L
Another host factor for SARS-CoV-2 Virus-host interactions determine cellular entry and spreading in tissues. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the earlier SARS-CoV use angiotensin-converting enzyme 2 (ACE2) as a receptor; however, their tissue tropism differs, raising the possibility that additional host factors are involved. The spike protein of SARS-CoV-2 contains a cleavage site for the protease furin that is absent from SARS-CoV (see the Perspective by Kielian). Cantuti-Castelvetri et al. now show that neuropilin-1 (NRP1), which is known to bind furin-cleaved substrates, potentiates SARS-CoV-2 infectivity. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial and epithelial cells. Daly et al. found that the furin-cleaved S1 fragment of the spike protein binds directly to cell surface NRP1 and blocking this interaction with a small-molecule inhibitor or monoclonal antibodies reduced viral infection in cell culture. Understanding the role of NRP1 in SARS-CoV-2 infection may suggest potential targets for future antiviral therapeutics. Science , this issue p. 856 , p. 861 ; see also p. 765
0
Citation1,703
0
Save
0

Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19

Jenny Meinhardt et al.Nov 30, 2020
+40
C
J
J
The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease. Moreover, thromboembolic events throughout the body, including in the CNS, have been described. Given the neurological symptoms observed in a large majority of individuals with COVID-19, SARS-CoV-2 penetrance of the CNS is likely. By various means, we demonstrate the presence of SARS-CoV-2 RNA and protein in anatomically distinct regions of the nasopharynx and brain. Furthermore, we describe the morphological changes associated with infection such as thromboembolic ischemic infarction of the CNS and present evidence of SARS-CoV-2 neurotropism. SARS-CoV-2 can enter the nervous system by crossing the neural-mucosal interface in olfactory mucosa, exploiting the close vicinity of olfactory mucosal, endothelial and nervous tissue, including delicate olfactory and sensory nerve endings. Subsequently, SARS-CoV-2 appears to follow neuroanatomical structures, penetrating defined neuroanatomical areas including the primary respiratory and cardiovascular control center in the medulla oblongata.
0
Paper
Citation1,230
0
Save
1

T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis

Shreeya Kedia et al.Jun 27, 2024
+18
R
H
S
Abstract Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer’s disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer’s disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8 + T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity. Thus, our data suggest that immune responses against myelinating oligodendrocytes may contribute to neurodegenerative diseases with amyloidosis.
1
Citation2
0
Save
215

Olfactory transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients

Jenny Meinhardt et al.Jun 4, 2020
+27
C
J
J
Abstract The newly identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, a pandemic respiratory disease presenting with fever, cough, and often pneumonia. Moreover, thromboembolic events throughout the body including the central nervous system (CNS) have been described. Given first indication for viral RNA presence in the brain and cerebrospinal fluid and in light of neurological symptoms in a large majority of COVID-19 patients, SARS-CoV-2-penetrance of the CNS is likely. By precisely investigating and anatomically mapping oro- and pharyngeal regions and brains of 32 patients dying from COVID-19, we not only describe CNS infarction due to cerebral thromboembolism, but also demonstrate SARS-CoV-2 neurotropism. SARS-CoV-2 enters the nervous system via trespassing the neuro-mucosal interface in the olfactory mucosa by exploiting the close vicinity of olfactory mucosal and nervous tissue including delicate olfactory and sensitive nerve endings. Subsequently, SARS-CoV-2 follows defined neuroanatomical structures, penetrating defined neuroanatomical areas, including the primary respiratory and cardiovascular control center in the medulla oblongata.
0

Neuropathological assessment of the olfactory bulb and tract in individuals with COVID-19

Nathalie Lengacher et al.Dec 19, 2023
+8
A
J
N
Summary The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) frequently experience hyposmia. We previously hypothesized that α-synuclein and tau misprocessing could occur following host responses to microbial triggers. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19+ patients (n=22), individuals with Lewy body disease (e.g., PD and dementia with Lewy bodies (DLB; n=6)), Alzheimer disease (AD; n=3), other non-synucleinopathy-linked degenerative diseases (e.g., progressive supranuclear palsy (PSP; n=2) and multisystem atrophy (MSA; n=1)). Further, we included neurologically healthy controls (HCO; n=9) and those with an inflammation-rich brain disorder as neurological controls (NCO; n=7). When probing for inflammatory changes focusing on anterior olfactory nuclei (AON) using anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, inflammation on average was not significantly altered in COVID19+ patients relative to controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-αSyn and phospho-tau signals were detected in the AON of tauopathy-and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes -when present-in the rostral, intracranial portion of the olfactory circuitry generally reflected neurodegenerative processes seen elsewhere in the brain. In general, inflammation correlated best with the degree of Alzheimer’s-linked tauopathy and declined with progression of age in COVID19+ patients.
383

Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system

Ludovico Cantuti‐Castelvetri et al.Jun 7, 2020
+27
B
S
L
SUMMARY The causative agent of the current pandemic and coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 1 . Understanding how SARS-CoV-2 enters and spreads within human organs is crucial for developing strategies to prevent viral dissemination. For many viruses, tissue tropism is determined by the availability of virus receptors on the surface of host cells 2 . Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as a host receptor, yet, their tropisms differ 3-5 . Here, we found that the cellular receptor neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, which was inhibited by a monoclonal blocking antibody against the extracellular b1b2 domain of NRP1. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial cells and in the epithelial cells facing the nasal cavity. Neuropathological analysis of human COVID-19 autopsies revealed SARS-CoV-2 infected NRP1-positive cells in the olfactory epithelium and bulb. In the olfactory bulb infection was detected particularly within NRP1-positive endothelial cells of small capillaries and medium-sized vessels. Studies in mice demonstrated, after intranasal application, NRP1-mediated transport of virus-sized particles into the central nervous system. Thus, NRP1 could explain the enhanced tropism and spreading of SARS-CoV-2.