LC
Lachlan Coin
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
61
(56% Open Access)
Cited by:
15,278
h-index:
61
/
i10-index:
142
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk

Josée Dupuis et al.Jan 17, 2010
The MAGIC investigators report results of a large genome-wide association study meta-analysis to identify common variants influencing fasting glucose homeostasis. They further show that several of the newly discovered loci influencing glycemic traits are also associated with risk of type 2 diabetes. Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes.
0
Citation2,134
0
Save
0

Hundreds of variants clustered in genomic loci and biological pathways affect human height

Hana Allen et al.Sep 29, 2010
A genome-wide association (GWA) study of more than 180,000 individuals has identified hundreds of genetic variants in at least 180 loci associated with adult human height. The loci are not clustered randomly but are enriched for genes involved in growth-related processes that influence adult height. This demonstrates that GWA studies of common human traits, and therefore of many diseases, can identify large numbers of loci that implicate potential causal genes. This very large genome-wide association study identifies hundreds of new genetic variants influencing adult height in at least 180 loci enriched for genes involved in skeletal growth defects. The results show that the likely causal gene is often located near the most strongly associated variant, that many loci have multiple independently associated variants and that associated variants are enriched for likely functional effects on genes. Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait2,3. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
0
Citation1,934
0
Save
0

Genome-wide association study identifies eight loci associated with blood pressure

Christopher Newton‐Cheh et al.May 10, 2009
Christopher Newton-Cheh and colleagues report a genome-wide association study for blood pressure traits as part of the Global BPgen consortium. They report eight loci with replicated association to systolic and/or diastolic blood pressure, with each also showing association to hypertension. Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10−24), CYP1A2 (P = 1 × 10−23), FGF5 (P = 1 × 10−21), SH2B3 (P = 3 × 10−18), MTHFR (P = 2 × 10−13), c10orf107 (P = 1 × 10−9), ZNF652 (P = 5 × 10−9) and PLCD3 (P = 1 × 10−8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
0
Citation1,184
0
Save
0

Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

Iris Heid et al.Oct 10, 2010
Cecilia Lindgren and colleagues report results of a large-scale genome-wide association study for waist-to-hip ratio, a measure of body fat distribution. They identify 13 new loci associated with this trait, several of which show stronger effects in women than in men. Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
0
Citation913
0
Save
0

Genome-wide association analysis of metabolic traits in a birth cohort from a founder population

Chiara Sabatti et al.Dec 7, 2008
Nelson Freimer and colleagues report the first genome-wide association study of a longitudinal birth cohort (the Northern Finland Birth Cohort 1966). The results include new associations for nine quantitative metabolic traits. Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene–environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.
0
Citation749
0
Save
0

Variants in MTNR1B influence fasting glucose levels

Inga Prokopenko et al.Dec 7, 2008
Gonçalo Abecasis and colleagues report associations with fasting plasma glucose levels in a collection of ten genome–wide association scans from the MAGIC consortium. They find variants in the gene encoding melatonin receptor 1B that are associated with fasting glucose levels and, in a meta-analysis of 13 case-control studies, also show association with increased risk of type 2 diabetes. To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06–0.08) mmol/l in fasting glucose levels (P = 3.2 × 10−50) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 × 10−15). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05–1.12), per G allele P = 3.3 × 10−7) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 × 10−57) and GCK (rs4607517, P = 1.0 × 10−25) loci.
0
Citation726
0
Save
0

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2

Robin Walters et al.Feb 1, 2010
Obesity is a highly heritable disorder but the genetic associations reported to date account for only a small percentage of the inherited variation in body mass index. Two groups report deletions on chromosome16p11.2 that may explain part of the 'missing heritability' in terms of 'high-penetrance' mutations that are rare but when present are very often associated with severe obesity. This is in contrast to more common gene defects that are less closely associated with clinical symptoms. Bochukova et al. identified rare recurrent copy number variants in 300 patients with severe early-onset obesity, caused by deletions involving several genes including SH2B1, known to be involved in leptin and insulin signalling. Many of the patients also suffered neurodevelopmental disorders. Walters et al. identified deletions of at least 593 kilobases on chromosome 16p11.2 in 31 patients with a previously unrecognized type of extreme obesity. The strategy they used to identify the lesion — using small well-phenotyped cohorts of extreme phenotypes with targeted follow-up in genome-wide association studies and population cohorts — shows promise as a means of identifying 'missing heritability' in complex metabolic diseases more generally. Recently, numerous single nucleotide polymorphisms have been identified as being associated with obesity, but these loci together account for only a small fraction of the known heritable component. Here, an association is reported between rare deletions of at least 593 kilobases at 16p11.2 and a highly penetrant form of obesity. The strategy used of combining study of extreme phenotypes with targeted follow-up is promising for identifying missing heritability in obesity. Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution1. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component1. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge2. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’4 in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
0
Citation520
0
Save
Load More