GP
Gabriele Pozzati
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
461
h-index:
12
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

A structural biology community assessment of AlphaFold2 applications

Mehmet Akdel et al.Nov 1, 2022
+31
E
D
M
Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods for protein structure predictions have reached the accuracy of experimentally determined models. Although this has been independently verified, the implementation of these methods across structural-biology applications remains to be tested. Here, we evaluate the use of AlphaFold2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modeling of interactions; and modeling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modeled when compared with homology modeling, identifying structural features rarely seen in the Protein Data Bank. AF2-based predictions of protein disorder and complexes surpass dedicated tools, and AF2 models can be used across diverse applications equally well compared with experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life-science research.
1
Citation370
0
Save
375

Improved prediction of protein-protein interactions using AlphaFold2

Patrick Bryant et al.Sep 15, 2021
A
G
P
Abstract Predicting the structure of interacting protein chains is a fundamental step towards understanding protein function. Unfortunately, no computational method can produce accurate structures of protein complexes. AlphaFold2, has shown unprecedented levels of accuracy in modelling single chain protein structures. Here, we apply AlphaFold2 for the prediction of heterodimeric protein complexes. We find that the AlphaFold2 protocol together with optimized multiple sequence alignments, generate models with acceptable quality (DockQ≥0.23) for 63% of the dimers. From the predicted interfaces we create a simple function to predict the DockQ score which distinguishes acceptable from incorrect models as well as interacting from non-interacting proteins with state-of-art accuracy. We find that, using the predicted DockQ scores, we can identify 51% of all interacting pairs at 1% FPR. The protocol can be found at: https://gitlab.com/ElofssonLab/FoldDock .
375
Citation34
0
Save
108

Towards a structurally resolved human protein interaction network

David Burke et al.Nov 9, 2021
+13
I
P
D
Abstract All cellular functions are governed by complex molecular machines that assemble through protein-protein interactions. Their atomic details are critical to the study of their molecular mechanisms but fewer than 5% of hundreds of thousands of human interactions have been structurally characterized. Here, we test the potential and limitations of recent progress in deep-learning methods using AlphaFold2 to predict structures for 65,484 human interactions. We show that higher confidence models are enriched in interactions supported by affinity or structure-based methods and can be orthogonally confirmed by spatial constraints defined by cross-link data. We identify 3,137 high confidence models, of which 1,371 have no homology to a known structure, from which we identify interface residues harbouring disease mutations, suggesting potential mechanisms for pathogenic variants. We find groups of interface phosphorylation sites that show patterns of co-regulation across conditions, suggestive of coordinated tuning of multiple interactions as signalling responses. Finally, we provide examples of how the predicted binary complexes can be used to build larger assemblies. Accurate prediction of protein complexes promises to greatly expand our understanding of the atomic details of human cell biology in health and disease.
108
Citation24
0
Save
1

Predicting the structure of large protein complexes using AlphaFold and Monte Carlo tree search

Patrick Bryant et al.Mar 12, 2022
+3
W
G
P
Abstract AlphaFold can predict the structure of single- and multiple-chain proteins with very high accuracy. However, the accuracy decreases with the number of chains, and the available GPU memory limits the size of protein complexes which can be predicted. Here we show that one can predict the structure of large complexes starting from predictions of subcomponents. We assemble 91 out of 175 complexes with 10-30 chains from predicted subcomponents using Monte Carlo tree search, with a median TM-score of 0.51. There are 30 highly accurate complexes (TM-score ≥0.8, 33% of complete assemblies). We create a scoring function, mpDockQ, that can distinguish if assemblies are complete and predict their accuracy. We find that complexes containing symmetry are accurately assembled, while asymmetrical complexes remain challenging. The method is freely available and accesible as a Colab notebook https://colab.research.google.com/github/patrickbryant1/MoLPC/blob/master/MoLPC.ipynb .
6

Limits and potential of combined folding and docking using PconsDock

Gabriele Pozzati et al.Jun 7, 2021
+3
C
W
G
Abstract In the last decade, de novo protein structure prediction accuracy for individual proteins has improved significantly by utilising deep learning (DL) methods for harvesting the co-evolution information from large multiple sequence alignments (MSA). In CASP14, the best groups predicted the structure of most proteins with impressive accuracy. The same approach can, in principle, also be used to extract information about evolutionary-based contacts across protein-protein interfaces. However, most of the earlier studies have not used the latest DL methods for inter-chain contact distance prediction. This paper introduces a fold-and-dock method, PconsDock, based on predicted residue-residue distances with trRosetta. PconsDock can simultaneously predict the tertiary and quaternary structure of a protein pair, even when the structures of the monomers are not known. The straightforward application of this method to a standard dataset for protein-protein docking yielded limited success. However, using alternative methods for MSA generating allowed us to dock accurately significantly more proteins. We also introduced a novel scoring function, PconsDock, that accurately separates 98% of correctly and incorrectly folded and docked proteins. The average performance of the method is comparable to the use of traditional, template-based or ab initio shape-complementarity-only docking methods. However, no a priori structural information for the individual proteins is needed. Moreover, the results of conventional and fold-and-dock approaches are complementary, and thus a combined docking pipeline could increase overall docking success significantly. PconsDocck contributed to the best model for one of the CASP14 oligomeric targets, H1065.
6
Citation11
0
Save
1

Improved protein docking by predicted interface residues

Gabriele Pozzati et al.Aug 26, 2021
A
P
G
ABSTRACT Scoring docking solutions is a difficult task, and many methods have been developed for this purpose. In docking, only a handful of the hundreds of thousands of models generated by docking algorithms are acceptable, causing difficulties when developing scoring functions. Today’s best scoring functions can significantly increase the number of top-ranked models but still fails for most targets. Here, we examine the possibility of utilising predicted residues on a protein-protein interface to score docking models generated during the scan stage of a docking algorithm. Many methods have been developed to infer the portions of a protein surface that interact with another protein, but most have not been benchmarked using docking algorithms. Different interface prediction methods are systematically tested for scoring >300.000 low-resolution rigid-body template free docking decoys. Overall we find that BIPSPI is the best method to identify interface amino acids and score docking solutions. Further, using BIPSPI provides better docking results than state of the art scoring functions, with >12% of first ranked docking models being acceptable. Additional experiments indicated precision as a high-importance metric when estimating interface prediction quality, focusing on docking constraints production. We also discussed several limitations for the adoption of interface predictions as constraints in a docking protocol.
0

A Systems Biology Analysis of Chronic Lymphocytic Leukemia

Gabriele Pozzati et al.Mar 28, 2024
+5
H
J
G
Abstract Whole-genome sequencing has revealed that TP53, NOTCH1, ATM, SF3B1, BIRC3, ABL, NXF1, BCR, ZAP70 are often mutated in CLL, but not consistently across all CLL patients. This paper employs a statistical thermo-dynamics approach in combination with the systems biology of the CLL protein-protein interaction networks to identify the most significant participant proteins in the cancerous transformation. Betti number (a topology of complexity) estimates highlight a protein hierarchy, primarily in the Wnt pathway known for aberrant CLL activation. These individually identified proteins suggest a network-targeted strategy over single-target drug development. The findings advocate for a multi-target inhibition approach, limited to several key proteins to minimize side effects, thereby providing a foundation for designing therapies. This study emphasizes a shift towards a comprehensive, multi-scale analysis to enhance personalized treatment strategies for CLL, which could be experimentally validated using siRNA or small molecule inhibitors. The result is not just the identification of these proteins but their rank-order, offering a potent signal amplification in the context of the 20,000 proteins produced by the human body, thus providing a strategic basis for therapeutic intervention in CLL, underscoring the necessity for a more holistic, cellular, chromosomal, and genome-wide study to develop tailored treatments for CLL patients. Author Summary Chronic Lymphocytic Leukemia (CLL) is a unique and slowly progressing cancer affecting white blood cells, and research on CLL has highlighted the inconsistency of gene mutations across patients. Using a novel approach that merges statistical thermodynamics and systems biology, this research examines the CLL protein-protein interaction networks to pinpoint proteins integral to the onset of the disease. Betti number (a topology of complexity) estimates, which measure the importance of individual proteins when removed from the network, helped identify numerous potential therapeutic targets, notably within the Wnt signaling pathway, a pathway implicated in various cellular processes and known for its defective expression in CLL. The finding advocates for a multi-target inhibition approach, focusing on several key proteins to minimize side effects, thereby laying a foundation for designing more effective therapies for CLL. This paper emphasizes the potential benefits of a comprehensive study, spanning cellular to genome-wide scales, to design personalized treatments for CLL patients.
317

A structural biology community assessment of AlphaFold 2 applications

Mehmet Akdel et al.Sep 26, 2021
+28
E
D
M
Abstract Most proteins fold into 3D structures that determine how they function and orchestrate the biological processes of the cell. Recent developments in computational methods have led to protein structure predictions that have reached the accuracy of experimentally determined models. While this has been independently verified, the implementation of these methods across structural biology applications remains to be tested. Here, we evaluate the use of AlphaFold 2 (AF2) predictions in the study of characteristic structural elements; the impact of missense variants; function and ligand binding site predictions; modelling of interactions; and modelling of experimental structural data. For 11 proteomes, an average of 25% additional residues can be confidently modelled when compared to homology modelling, identifying structural features rarely seen in the PDB. AF2-based predictions of protein disorder and protein complexes surpass state-of-the-art tools and AF2 models can be used across diverse applications equally well compared to experimentally determined structures, when the confidence metrics are critically considered. In summary, we find that these advances are likely to have a transformative impact in structural biology and broader life science research.