GS
Gideon Schreiber
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
29
(86% Open Access)
Cited by:
4,216
h-index:
74
/
i10-index:
151
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses

Wanwisa Dejnirattisai et al.Jan 4, 2022
+93
D
J
W

Summary

 On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.
0
Citation888
0
Save
0

Energetics of protein-protein interactions: Analysis ofthe Barnase-Barstar interface by single mutations and double mutant cycles

Gideon Schreiber et al.Jan 1, 1995
A
G
The interaction of barnase, an extracellular RNase of Bacillus amyloliquefaciens, with its intracellular inhibitor barstar is a suitable paradigm for protein-protein interactions, since the structures of both the free and the complexed proteins are available at high resolution. The contributions of residues from both proteins to the energetics of kinetics and thermodynamics of binding were measured by double mutant cycle analysis. Such cycles reveal whether the contributions from a pair of residues are additive, or the effects of mutations are coupled. The aim of the study was to determine which of the interactions are co-operative. Double mutant cycles were constructed between a subset of five barnase and seven barstar residues, which were shown by structural and mutagenesis studies to be important in stabilising the complex. The coupling energy between two residues was found to decrease with the distance between them. Generally, residues separated by less than 7 Å interact co-operatively. At greater separations, the effects of mutation are additive, and the energetics of the interactions are independent of each other. The highest coupling energies are found between pairs of charged residues (1.6 to 7 kcal mol−1). Three of the six most important interactions detected by double mutant cycle analysis (with coupling energies of more than 3.0 kcal mol−1) had not been noted previously from examination of the crystal structure. The effects of mutation on the kinetics of association are all additive, apart from charged residues located at distances of up to 10 Å apart, which are co-operative. This can be explained by the fact that the transition state for association occurs before most interactions are formed.
0
Citation554
0
Save
0

SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity

Chihiro Motozono et al.Jun 15, 2021
+24
J
M
C
Many SARS-CoV-2 variants with naturally acquired mutations have emerged. These mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has been investigated, sensitivity to human leukocyte antigen (HLA)-restricted cellular immunity remains largely unexplored. Here, we demonstrate that two recently emerging mutations in the receptor-binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429 and B.1.617) and Y453F (in B.1.1.298), confer escape from HLA-A24-restricted cellular immunity. These mutations reinforce affinity toward the host entry receptor ACE2. Notably, the L452R mutation increases spike stability, viral infectivity, viral fusogenicity, and thereby promotes viral replication. These data suggest that HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes and that a further threat of the SARS-CoV-2 pandemic is escape from cellular immunity.
0
Citation497
0
Save
0

ProMate: A Structure Based Prediction Program to Identify the Location of Protein–Protein Binding Sites

Hani Neuvirth et al.Mar 6, 2004
G
R
H
Is the whole protein surface available for interaction with other proteins, or are specific sites pre-assigned according to their biophysical and structural character? And if so, is it possible to predict the location of the binding site from the surface properties? These questions are answered quantitatively by probing the surfaces of proteins using spheres of radius of 10 A on a database (DB) of 57 unique, non-homologous proteins involved in heteromeric, transient protein-protein interactions for which the structures of both the unbound and bound states were determined. In structural terms, we found the binding site to have a preference for beta-sheets and for relatively long non-structured chains, but not for alpha-helices. Chemically, aromatic side-chains show a clear preference for binding sites. While the hydrophobic and polar content of the interface is similar to the rest of the surface, hydrophobic and polar residues tend to cluster in interfaces. In the crystal, the binding site has more bound water molecules surrounding it, and a lower B-factor already in the unbound protein. The same biophysical properties were found to hold for the unbound and bound DBs. All the significant interface properties were combined into ProMate, an interface prediction program. This was followed by an optimization step to choose the best combination of properties, as many of them are correlated. During optimization and prediction, the tested proteins were not used for data collection, to avoid over-fitting. The prediction algorithm is fully automated, and is used to predict the location of potential binding sites on unbound proteins with known structures. The algorithm is able to successfully predict the location of the interface for about 70% of the proteins. The success rate of the predictor was equal whether applied on the unbound DB or on the disjoint bound DB. A prediction is assumed correct if over half of the predicted continuous interface patch is indeed interface. The ability to predict the location of protein-protein interfaces has far reaching implications both towards our understanding of specificity and kinetics of binding, as well as in assisting in the analysis of the proteome.
0

Type I interferon responses in rhesus macaques prevent SIV infection and slow disease progression

Netanya Utay et al.Jul 1, 2014
+23
J
S
N
The timing of type I interferon signalling determines the disease course of SIV infection. Type I interferon (IFN-I) is shown here to have dual effects in rhesus macaques exposed to simian immunodeficiency virus (SIV): it is beneficial at the onset of infection but as infection progresses it becomes detrimental. IFN signaling was manipulated in two ways. IFN-I receptor blockade results in increased plasma viraemia, accelerated CD4 T cell loss and progression to AIDS. In contrast, IFN-α2a administration prior to high-dose intrarectal SIV challenge increases resistance to systemic infection. However, continued IFN-α2a treatment induces IFN-I desensitization and facilitates SIV infection. Overall, the benefits of early antiviral activity appear to outweigh the detrimental effects of immune activation during acute SIV infection. Inflammation in HIV infection is predictive of non-AIDS morbidity and death1, higher set point plasma virus load2 and virus acquisition3; thus, therapeutic agents are in development to reduce its causes and consequences. However, inflammation may simultaneously confer both detrimental and beneficial effects. This dichotomy is particularly applicable to type I interferons (IFN-I) which, while contributing to innate control of infection4,5,6,7,8,9,10, also provide target cells for the virus during acute infection, impair CD4 T-cell recovery, and are associated with disease progression6,7,11,12,13,14,15,16,17,18,19. Here we manipulated IFN-I signalling in rhesus macaques (Macaca mulatta) during simian immunodeficiency virus (SIV) transmission and acute infection with two complementary in vivo interventions. We show that blockade of the IFN-I receptor caused reduced antiviral gene expression, increased SIV reservoir size and accelerated CD4 T-cell depletion with progression to AIDS despite decreased T-cell activation. In contrast, IFN-α2a administration initially upregulated expression of antiviral genes and prevented systemic infection. However, continued IFN-α2a treatment induced IFN-I desensitization and decreased antiviral gene expression, enabling infection with increased SIV reservoir size and accelerated CD4 T-cell loss. Thus, the timing of IFN-induced innate responses in acute SIV infection profoundly affects overall disease course and outweighs the detrimental consequences of increased immune activation. Yet, the clinical consequences of manipulation of IFN signalling are difficult to predict in vivo and therapeutic interventions in human studies should be approached with caution.
0
Citation432
0
Save
0

SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution

Jiří Zahradník et al.Aug 16, 2021
+15
M
S
J
SARS-CoV-2 variants of interest and concern will continue to emerge for the duration of the COVID-19 pandemic. To map mutations in the receptor-binding domain (RBD) of the spike protein that affect binding to angiotensin-converting enzyme 2 (ACE2), the receptor for SARS-CoV-2, we applied in vitro evolution to affinity-mature the RBD. Multiple rounds of random mutagenic libraries of the RBD were sorted against decreasing concentrations of ACE2, resulting in the selection of higher affinity RBD binders. We found that mutations present in more transmissible viruses (S477N, E484K and N501Y) were preferentially selected in our high-throughput screen. Evolved RBD mutants include prominently the amino acid substitutions found in the RBDs of B.1.620, B.1.1.7 (Alpha), B1.351 (Beta) and P.1 (Gamma) variants. Moreover, the incidence of RBD mutations in the population as presented in the GISAID database (April 2021) is positively correlated with increased binding affinity to ACE2. Further in vitro evolution increased binding by 1,000-fold and identified mutations that may be more infectious if they evolve in the circulating viral population, for example, Q498R is epistatic to N501Y. We show that our high-affinity variant RBD-62 can be used as a drug to inhibit infection with SARS-CoV-2 and variants Alpha, Beta and Gamma in vitro. In a model of SARS-CoV-2 challenge in hamster, RBD-62 significantly reduced clinical disease when administered before or after infection. A 2.9 Å cryo-electron microscopy structure of the high-affinity complex of RBD-62 and ACE2, including all rapidly spreading mutations, provides a structural basis for future drug and vaccine development and for in silico evaluation of known antibodies. Evolution of the SARS-CoV-2 spike protein receptor-binding domain in vitro recapitulates SARS-CoV-2 variant emergence and produces an effective antiviral spike receptor-binding domain variant.
0
Citation353
0
Save
0

Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details

Vladimir Potapov et al.Jun 26, 2009
G
M
V
Methods for protein modeling and design advanced rapidly in recent years. At the heart of these computational methods is an energy function that calculates the free energy of the system. Many of these functions were also developed to estimate the consequence of mutation on protein stability or binding affinity. In the current study, we chose six different methods that were previously reported as being able to predict the change in protein stability (ΔΔG) upon mutation: CC/PBSA, EGAD, FoldX, I-Mutant2.0, Rosetta and Hunter. We evaluated their performance on a large set of 2156 single mutations, avoiding for each program the mutations used for training. The correlation coefficients between experimental and predicted ΔΔG values were in the range of 0.59 for the best and 0.26 for the worst performing method. All the tested computational methods showed a correct trend in their predictions, but failed in providing the precise values. This is not due to lack in precision of the experimental data, which showed a correlation coefficient of 0.86 between different measurements. Combining the methods did not significantly improve prediction accuracy compared to a single method. These results suggest that there is still room for improvement, which is crucial if we want forcefields to perform better in their various tasks.
0
Citation340
0
Save
7k

Virological characteristics of the novel SARS-CoV-2 Omicron variants including BA.2.12.1, BA.4 and BA.5

Izumi Kimura et al.May 26, 2022
+39
T
D
I
Abstract After the global spread of SARS-CoV-2 Omicron BA.2 lineage, some BA.2-related variants that acquire mutations in the L452 residue of spike protein, such as BA.2.9.1 and BA.2.13 (L452M), BA.2.12.1 (L452Q), and BA.2.11, BA.4 and BA.5 (L452R), emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these L452R/M/Q-bearing BA.2-related Omicron variants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1 and BA.2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. Furthermore, infection experiments using hamsters indicated that BA.4/5 is more pathogenic than BA.2. Altogether, our multiscale investigations suggest that the risk of L452R/M/Q-bearing BA.2-related Omicron variants, particularly BA.4 and BA.5, to global health is potentially greater than that of original BA.2. Highlights Spike L452R/Q/M mutations increase the effective reproduction number of BA.2 BA.4/5 is resistant to the immunity induced by BA.1 and BA.2 infections BA.2.12.1 and BA.4/5 more efficiently spread in human lung cells than BA.2 BA.4/5 is more pathogenic than BA.2 in hamsters
7k
Citation48
0
Save
1k

Virological characteristics of the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants

Tomokazu Tamura et al.Dec 27, 2022
+33
J
L
T
Abstract In late 2022, the SARS-CoV-2 Omicron subvariants have highly diversified, and XBB is spreading rapidly around the world. Our phylogenetic analyses suggested that XBB emerged by recombination of two co-circulating BA.2 lineages, BJ.1 and BM.1.1.1 (a progeny of BA.2.75), during the summer of 2022 around India. In vitro experiments revealed that XBB is the most profoundly resistant variant to BA.2/5 breakthrough infection sera ever and is more fusogenic than BA.2.75. Notably, the recombination breakpoint is located in the receptor-binding domain of spike, and each region of recombined spike conferred immune evasion and augmented fusogenicity to the XBB spike. Finally, the intrinsic pathogenicity of XBB in hamsters is comparable to or even lower than that of BA.2.75. Our multiscale investigation provided evidence suggesting that XBB is the first documented SARS-CoV-2 variant increasing its fitness through recombination rather than single mutations.
1k
Citation32
0
Save
Load More