TS
Todd Schmitt
Author with expertise in Ecology and Conservation of Marine Mammals
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2
h-index:
15
/
i10-index:
28
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comparison of infrared thermography of the blowhole mucosa with rectal temperatures in killer whales (Orcinus orca)

Jennifer Russell et al.May 24, 2024
Killer whales are an important sentinel species and developing non-invasive methods of health assessments might provide insight for understanding how wildlife health is influenced by ecosystem change. Rectal temperature (RT) is a proxy for core body temperature in managed-care cetaceans, however, this measurement is impractical for free-ranging cetaceans and infrared imaging has been suggested as an alternative. The aim of the current study was to prospectively compare infrared thermography of the blowhole to rectal temperatures in killer whales, as well as establish a healthy range for rectal temperature using retrospective data. Infrared video was recorded from the blowhole of thirteen healthy killer whales in managed care, immediately followed by rectal temperature measurement. Repeated measures Bland-Altman analysis revealed blowhole temperature (BHT) had a bias of -1.28°C from RT. Considerable proportional bias was observed with agreement between measurements improving as mean temperature increased. RT positively associated with air temperature, and inversely associated with body mass. BHT was not significantly affected by sex or body mass but was significantly affected by water temperature and air temperature. Retrospective analysis from eighteen killer whales (n = 3591 observations) was performed to generate expected RT ranges, partitioning out for sex and body mass. Given the proportional bias observed with Bland Altman analysis, BHT cannot currently be recommended as a measurement for absolute core body temperature, however infrared thermography of the blowhole remains a promising tool for health assessment of free-ranging killer whale populations, as it may serve as a non-contact screening tool to detect pyrexic animals within a group.
0
Paper
Citation1
0
Save
199

Universal DNA methylation age across mammalian tissues

A.T. Lu et al.Jan 19, 2021
ABSTRACT Aging is often perceived as a degenerative process resulting from random accrual of cellular damage over time. Despite this, age can be accurately estimated by epigenetic clocks based on DNA methylation profiles from almost any tissue of the body. Since such pan-tissue epigenetic clocks have been successfully developed for several different species, we hypothesized that one can build pan-mammalian clocks that measure age in all mammalian species. To address this, we generated data using 11,754 methylation arrays, each profiling up to 36 thousand cytosines in highly-conserved stretches of DNA, from 59 tissue-types derived from 185 mammalian species. From these methylation profiles, we constructed three age predictors, each with a single mathematical formula, termed universal pan-mammalian clocks that are accurate in estimating the age (r>0.96) of any mammalian tissue. Deviations between epigenetic age and chronological age relate to mortality risk in humans, mutations that affect the somatotropic axis in mice, and caloric restriction. We characterized specific cytosines, whose methylation levels change with age across most mammalian species. These cytosines are greatly enriched in polycomb repressive complex 2-binding sites, are located in regions that gradually lose chromatin accessibility with age and are proximal to genes that play a role in mammalian development, cancer, human obesity, and human longevity. Collectively, these results support the notion that aging is indeed evolutionarily conserved and coupled to developmental processes across all mammalian species - a notion that was long-debated without the benefit of this new compelling evidence. SUMMARY This study identifies and characterizes evolutionarily conserved cytosines implicated in the aging process across mammals and establishes pan mammalian epigenetic clocks.
5

Evolved increases in hemoglobin-oxygen affinity and Bohr effect coincided with the aquatic specialization of penguins

Anthony Signore et al.Nov 18, 2020
Abstract Dive capacities of air-breathing vertebrates are dictated by onboard O 2 stores, suggesting that physiological specializations of diving birds like penguins may have involved adaptive changes in convective O 2 transport. It has been hypothesized that increased hemoglobin (Hb)-O 2 affinity improves pulmonary O 2 extraction and enhance capacities for breath-hold diving. To investigate evolved changes in Hb function associated with the aquatic specialization of penguins, we integrated comparative measurements of whole-blood and purified native Hbs with protein engineering experiments based on site-directed mutagenesis. We reconstructed and resurrected ancestral Hbs representing the common ancestor of penguins and the more ancient ancestor shared by penguins and their closest nondiving relatives (order Procellariiformes, which includes albatrosses, shearwaters, petrels, and storm petrels). These two ancestors bracket the phylogenetic interval in which penguin-specific changes in Hb function would have evolved. The experiments revealed that penguins evolved a derived increase in Hb-O 2 affinity and a greatly augmented Bohr effect (reduced Hb-O 2 affinity at low pH). Although an increased Hb-O 2 affinity reduces the gradient for O 2 diffusion from systemic capillaries to metabolizing cells, this can be compensated by a concomitant enhancement of the Bohr effect, thereby promoting O 2 unloading in acidified tissues. We suggest that the evolved increase in Hb-O 2 affinity in combination with the augmented Bohr effect maximizes both O 2 extraction from the lungs and O 2 unloading from the blood, allowing penguins to fully utilize their onboard O 2 stores and maximize underwater foraging time.
0

Shotgun Metabolomic Analysis of Killer Whale (Orcinus orca) Exhaled Breath Condensate

Trevor Harsla et al.Dec 5, 2024
Abstract The ocean is facing many anthropogenic stressors caused from both pollution and climate change. These stressors are significantly impacting and changing the ocean’s ecosystem, and as such, methods must continually be developed that can improve our ability to monitor the health of marine life. For cetaceans, the current practice for health assessments of individuals requires live capture and release, which is expensive, usually stressful, and for larger species impractical. In this study, we investigated the potential of exhaled breath condensate (EBC) samples to provide unique metabolomic profiles from healthy killer whales (Orcinus orca) of varying known age and sex. EBC collection is a non-invasive procedure that has potential for remote collection using unmanned aerial vehicles, thus improving our ability to understand physiologic parameters within wild populations while minimizing stress from collection procedures However, descriptions of the available metabolome within EBC and its clinical significance within animals of known health and age must be described before this technique can be considered diagnostically useful. We describe normal variations of the metabolome across age and sex and provide evidence for the potential of this breath analysis method to become a valuable adjunctive tool for assessing the health of managed-care and free-ranging killer whales.