DW
Denis Wirtz
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
54
(78% Open Access)
Cited by:
6,553
h-index:
90
/
i10-index:
235
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reversible Hydrogels from Self-Assembling Artificial Proteins

Wendy Petka et al.Jul 17, 1998
+2
K
J
W
Recombinant DNA methods were used to create artificial proteins that undergo reversible gelation in response to changes in pH or temperature. The proteins consist of terminal leucine zipper domains flanking a central, flexible, water-soluble polyelectrolyte segment. Formation of coiled-coil aggregates of the terminal domains in near-neutral aqueous solutions triggers formation of a three-dimensional polymer network, with the polyelectrolyte segment retaining solvent and preventing precipitation of the chain. Dissociation of the coiled-coil aggregates through elevation of pH or temperature causes dissolution of the gel and a return to the viscous behavior that is characteristic of polymer solutions. The mild conditions under which gel formation can be controlled (near-neutral pH and near-ambient temperature) suggest that these materials have potential in bioengineering applications requiring encapsulation or controlled release of molecular and cellular species.
0

A distinctive role for focal adhesion proteins in three-dimensional cell motility

Stephanie Fraley et al.May 16, 2010
+4
R
Y
S
Focal adhesions are large multi-protein assemblies that form at the basal surface of cells on planar dishes, and that mediate cell signalling, force transduction and adhesion to the substratum. Although much is known about focal adhesion components in two-dimensional (2D) systems, their role in migrating cells in a more physiological three-dimensional (3D) matrix is largely unknown. Live-cell microscopy shows that for cells fully embedded in a 3D matrix, focal adhesion proteins, including vinculin, paxillin, talin, alpha-actinin, zyxin, VASP, FAK and p130Cas, do not form aggregates but are diffusely distributed throughout the cytoplasm. Despite the absence of detectable focal adhesions, focal adhesion proteins still modulate cell motility, but in a manner distinct from cells on planar substrates. Rather, focal adhesion proteins in matrix-embedded cells regulate cell speed and persistence by affecting protrusion activity and matrix deformation, two processes that have no direct role in controlling 2D cell speed. This study shows that membrane protrusions constitute a critical motility/matrix-traction module that drives cell motility in a 3D matrix.
0

A perinuclear actin cap regulates nuclear shape

Shyam Khatau et al.Oct 23, 2009
+5
P
C
S
Defects in nuclear morphology often correlate with the onset of disease, including cancer, progeria, cardiomyopathy, and muscular dystrophy. However, the mechanism by which a cell controls its nuclear shape is unknown. Here, we use adhesive micropatterned surfaces to control the overall shape of fibroblasts and find that the shape of the nucleus is tightly regulated by the underlying cell adhesion geometry. We found that this regulation occurs through a dome-like actin cap that covers the top of the nucleus. This cap is composed of contractile actin filament bundles containing phosphorylated myosin, which form a highly organized, dynamic, and oriented structure in a wide variety of cells. The perinuclear actin cap is specifically disorganized or eliminated by inhibition of actomyosin contractility and rupture of the LINC complexes, which connect the nucleus to the actin cap. The organization of this actin cap and its nuclear shape-determining function are disrupted in cells from mouse models of accelerated aging (progeria) and muscular dystrophy with distorted nuclei caused by alterations of A-type lamins. These results highlight the interplay between cell shape, nuclear shape, and cell adhesion mediated by the perinuclear actin cap.
0

A comparison of methods to assess cell mechanical properties

Pei-Hsun Wu et al.Jun 15, 2018
+19
A
D
P
The mechanical properties of cells influence their cellular and subcellular functions, including cell adhesion, migration, polarization, and differentiation, as well as organelle organization and trafficking inside the cytoplasm. Yet reported values of cell stiffness and viscosity vary substantially, which suggests differences in how the results of different methods are obtained or analyzed by different groups. To address this issue and illustrate the complementarity of certain approaches, here we present, analyze, and critically compare measurements obtained by means of some of the most widely used methods for cell mechanics: atomic force microscopy, magnetic twisting cytometry, particle-tracking microrheology, parallel-plate rheometry, cell monolayer rheology, and optical stretching. These measurements highlight how elastic and viscous moduli of MCF-7 breast cancer cells can vary 1,000-fold and 100-fold, respectively. We discuss the sources of these variations, including the level of applied mechanical stress, the rate of deformation, the geometry of the probe, the location probed in the cell, and the extracellular microenvironment. This Analysis compares and contrasts methods for measuring the mechanical properties of cells by applying the different approaches to the same breast cancer cell line.
0

Mechanics of Living Cells Measured by Laser Tracking Microrheology

Sōichiro Yamada et al.Apr 1, 2000
S
D
S
To establish laser-tracking microrheology (LTM) as a new technique for quantifying cytoskeletal mechanics, we measure viscoelastic moduli with wide bandwidth (5 decades) within living cells. With the first subcellular measurements of viscoelastic phase angles, LTM provides estimates of solid versus liquid behavior at different frequencies. In LTM, the viscoelastic shear moduli are inferred from the Brownian motion of particles embedded in the cytoskeletal network. Custom laser optoelectronics provide sub-nanometer and near-microsecond resolution of particle trajectories. The kidney epithelial cell line, COS7, has numerous spherical lipid-storage granules that are ideal probes for noninvasive LTM. Although most granules are percolating through perinuclear spaces, a subset of perinuclear granules is embedded in dense viscoelastic cytoplasm. Over all time scales embedded particles exhibit subdiffusive behavior and are not merely tethered by molecular motors. At low frequencies, lamellar regions (820 +/- 520 dyne/cm(2)) are more rigid than viscoelastic perinuclear regions (330 +/- 250 dyne/cm(2), p < 0.0001), but spectra converge at high frequencies. Although the actin-disrupting agent, latrunculin A, softens and liquefies lamellae, physiological levels of F-actin, alone (11 +/- 1.2 dyne/cm(2)) are approximately 70-fold softer than lamellae. Therefore, F-actin is necessary for lamellae mechanics, but not sufficient. Furthermore, in time-lapse of apparently quiescent cells, individual lamellar granules can show approximately 4-fold changes in moduli that last >10 s. Over a broad range of frequencies (0.1-30, 000 rad/s), LTM provides a unique ability to noninvasively quantify dynamic, local changes in cell viscoelasticity.
0

Water Permeation Drives Tumor Cell Migration in Confined Microenvironments

Kimberly Stroka et al.Apr 1, 2014
+4
S
H
K
Highlights•Modeling and imaging reveal osmotic mechanism for actin-independent migration•In confined spaces, the distribution of Na+/H+ pumps and aquaporins is polarized•Osmotic shocks influence cell migration speed and direction•Water permeation regulates cell volume and drives migration in narrow channelsSummaryCell migration is a critical process for diverse (patho)physiological phenomena. Intriguingly, cell migration through physically confined spaces can persist even when typical hallmarks of 2D planar migration, such as actin polymerization and myosin II-mediated contractility, are inhibited. Here, we present an integrated experimental and theoretical approach ("Osmotic Engine Model") and demonstrate that directed water permeation is a major mechanism of cell migration in confined microenvironments. Using microfluidic and imaging techniques along with mathematical modeling, we show that tumor cells confined in a narrow channel establish a polarized distribution of Na+/H+ pumps and aquaporins in the cell membrane, which creates a net inflow of water and ions at the cell leading edge and a net outflow of water and ions at the trailing edge, leading to net cell displacement. Collectively, this study presents an alternate mechanism of cell migration in confinement that depends on cell-volume regulation via water permeation.PaperFlick/cms/asset/e52821c1-ce66-4eaa-b35a-fa935c33fc15/mmc4.mp4Loading ...Download video (mp4, 46 MB)Graphical abstract
0

Hypoxia-inducible Factor 1 (HIF-1) Promotes Extracellular Matrix Remodeling under Hypoxic Conditions by Inducing P4HA1, P4HA2, and PLOD2 Expression in Fibroblasts

Daniele Gilkes et al.Feb 20, 2013
+2
P
S
D
Extracellular matrix (ECM) composition, organization, and compliance provide both architectural and chemical cues that modulate tissue structure and function. ECM produced by stromal fibroblasts plays a key role in breast cancer invasion and metastasis, which are also stimulated by intratumoral hypoxia. Here, we demonstrate that hypoxia-inducible factor 1 (HIF-1) is a critical regulator of ECM remodeling by fibroblasts under hypoxic conditions. HIF-1 activates expression of genes encoding collagen prolyl (P4HA1 and P4HA2) and lysyl (PLOD2) hydroxylases. P4HA1 and P4HA2 are required for collagen deposition, whereas PLOD2 is required for ECM stiffening and collagen fiber alignment. Together P4HA1, P4HA2, and PLOD2 mediate remodeling of ECM composition, alignment, and mechanical properties in response to hypoxia. HIF-1-dependent ECM remodeling by hypoxic fibroblasts induces changes in breast cancer cell morphology, adhesion, and motility that promote invasion and metastasis. Extracellular matrix (ECM) composition, organization, and compliance provide both architectural and chemical cues that modulate tissue structure and function. ECM produced by stromal fibroblasts plays a key role in breast cancer invasion and metastasis, which are also stimulated by intratumoral hypoxia. Here, we demonstrate that hypoxia-inducible factor 1 (HIF-1) is a critical regulator of ECM remodeling by fibroblasts under hypoxic conditions. HIF-1 activates expression of genes encoding collagen prolyl (P4HA1 and P4HA2) and lysyl (PLOD2) hydroxylases. P4HA1 and P4HA2 are required for collagen deposition, whereas PLOD2 is required for ECM stiffening and collagen fiber alignment. Together P4HA1, P4HA2, and PLOD2 mediate remodeling of ECM composition, alignment, and mechanical properties in response to hypoxia. HIF-1-dependent ECM remodeling by hypoxic fibroblasts induces changes in breast cancer cell morphology, adhesion, and motility that promote invasion and metastasis. Withdrawal: Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblastsJournal of Biological ChemistryVol. 299Issue 9PreviewThis article has been withdrawn by the authors, except S. Bajpai and P. Chaturvedi who could not be reached. The authors and journal concluded figure 1 presented background issues on ‘FN’ panel, lane 1. In figure 2B, ‘FN’ panel corresponding to ‘Conditioned media’ (bottom panel in the middle), lanes 1 and 4 were reused. In addition, the top right panel for ‘ECM’, lanes 3 and 4 were reused. Finally, ‘Conditioned media’ top middle panel, lanes 1 and 4 were reused. Figure 3B ‘HIF 1a’ top panel, lanes 5 and 7 were reused. Full-Text PDF Open Access
0

Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation

Carmen Wong et al.Sep 12, 2011
+9
H
D
C
Primary tumors facilitate metastasis by directing bone marrow-derived cells (BMDCs) to colonize the lungs before the arrival of cancer cells. Here, we demonstrate that hypoxia-inducible factor 1 (HIF-1) is a critical regulator of breast cancer metastatic niche formation through induction of multiple members of the lysyl oxidase (LOX) family, including LOX, LOX-like 2, and LOX-like 4, which catalyze collagen cross-linking in the lungs before BMDC recruitment. Only a subset of LOX family members was expressed in any individual breast cancer, but HIF-1 was required for expression in each case. Knockdown of HIF-1 or hypoxia-induced LOX family members reduced collagen cross-linking, CD11b + BMDC recruitment, and metastasis formation in the lungs of mice after orthotopic transplantation of human breast cancer cells. Metastatic niche formation is an HIF-1–dependent event during breast cancer progression.
0
Citation402
0
Save
0

Micromechanical Mapping of Live Cells by Multiple-Particle-Tracking Microrheology

Yiider Tseng et al.Dec 1, 2002
D
T
Y
This paper introduces the method of live-cell multiple-particle-tracking microrheology (MPTM), which quantifies the local mechanical properties of living cells by monitoring the Brownian motion of individual microinjected fluorescent particles. Particle tracking of carboxylated microspheres imbedded in the cytoplasm produce spatial distributions of cytoplasmic compliances and frequency-dependent viscoelastic moduli. Swiss 3T3 fibroblasts are found to behave like a stiff elastic material when subjected to high rates of deformations and like a soft liquid at low rates of deformations. By analyzing the relative contributions of the subcellular compliances to the mean compliance, we find that the cytoplasm is much more mechanically heterogeneous than reconstituted actin filament networks. Carboxylated microspheres embedded in cytoplasm through endocytosis and amine-modified polystyrene microspheres, which are microinjected or endocytosed, often show directed motion and strong nonspecific interactions with cytoplasmic proteins, which prevents computation of local moduli from the microsphere displacements. Using MPTM, we investigate the mechanical function of α-actinin in non-muscle cells: α-actinin-microinjected cells are stiffer and yet mechanically more heterogeneous than control cells, in agreement with models of reconstituted cross-linked actin filament networks. MPTM is a new type of functional microscopy that can test the local, rate-dependent mechanical and ultrastructural properties of living cells.
0
Paper
Citation399
0
Save
0

Transient Opening of the Mitochondrial Permeability Transition Pore Induces Microdomain Calcium Transients in Astrocyte Processes

Amit Agarwal et al.Jan 26, 2017
+5
E
P
A
Astrocytes extend highly branched processes that form functionally isolated microdomains, facilitating local homeostasis by redistributing ions, removing neurotransmitters, and releasing factors to influence blood flow and neuronal activity. Microdomains exhibit spontaneous increases in calcium (Ca2+), but the mechanisms and functional significance of this localized signaling are unknown. By developing conditional, membrane-anchored GCaMP3 mice, we found that microdomain activity that occurs in the absence of inositol triphosphate (IP3)-dependent release from endoplasmic reticulum arises through Ca2+ efflux from mitochondria during brief openings of the mitochondrial permeability transition pore. These microdomain Ca2+ transients were facilitated by the production of reactive oxygen species during oxidative phosphorylation and were enhanced by expression of a mutant form of superoxide dismutase 1 (SOD1 G93A) that causes astrocyte dysfunction and neurodegeneration in amyotrophic lateral sclerosis (ALS). By localizing mitochondria to microdomains, astrocytes ensure local metabolic support for energetically demanding processes and enable coupling between metabolic demand and Ca2+ signaling events.
Load More