BP
Bram Prins
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(55% Open Access)
Cited by:
4,623
h-index:
38
/
i10-index:
67
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genomic atlas of the human plasma proteome

Benjamin Sun et al.May 29, 2018
+30
J
J
B
Although plasma proteins have important roles in biological processes and are the direct targets of many drugs, the genetic factors that control inter-individual variation in plasma protein levels are not well understood. Here we characterize the genetic architecture of the human plasma proteome in healthy blood donors from the INTERVAL study. We identify 1,927 genetic associations with 1,478 proteins, a fourfold increase on existing knowledge, including trans associations for 1,104 proteins. To understand the consequences of perturbations in plasma protein levels, we apply an integrated approach that links genetic variation with biological pathway, disease, and drug databases. We show that protein quantitative trait loci overlap with gene expression quantitative trait loci, as well as with disease-associated loci, and find evidence that protein biomarkers have causal roles in disease using Mendelian randomization analysis. By linking genetic factors to diseases via specific proteins, our analyses highlight potential therapeutic targets, opportunities for matching existing drugs with new disease indications, and potential safety concerns for drugs under development. A genetic atlas of the human plasma proteome, comprising 1,927 genetic associations with 1,478 proteins, identifies causes of disease and potential drug targets.
0
Citation1,519
0
Save
0

Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps

Anubha Mahajan et al.Oct 1, 2018
+97
C
A
A
We expanded GWAS discovery for type 2 diabetes (T2D) by combining data from 898,130 European-descent individuals (9% cases), after imputation to high-density reference panels. With these data, we (i) extend the inventory of T2D-risk variants (243 loci, 135 newly implicated in T2D predisposition, comprising 403 distinct association signals); (ii) enrich discovery of lower-frequency risk alleles (80 index variants with minor allele frequency <5%, 14 with estimated allelic odds ratio >2); (iii) substantially improve fine-mapping of causal variants (at 51 signals, one variant accounted for >80% posterior probability of association (PPA)); (iv) extend fine-mapping through integration of tissue-specific epigenomic information (islet regulatory annotations extend the number of variants with PPA >80% to 73); (v) highlight validated therapeutic targets (18 genes with associations attributable to coding variants); and (vi) demonstrate enhanced potential for clinical translation (genome-wide chip heritability explains 18% of T2D risk; individuals in the extremes of a T2D polygenic risk score differ more than ninefold in prevalence). Combining 32 genome-wide association studies with high-density imputation provides a comprehensive view of the genetic contribution to type 2 diabetes in individuals of European ancestry with respect to locus discovery, causal-variant resolution, and mechanistic insight.
0
Citation1,495
0
Save
0

Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

John Chambers et al.Oct 16, 2011
+97
J
W
J
John Chambers and colleagues report a genome-wide association study for markers of liver function. They identify 42 loci associated with concentrations of one or more liver enzymes in plasma, and use a range of functional genomic analyses to suggest candidate genes at these loci. Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
0
Citation519
0
Save
0

Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals

Lasse Folkersen et al.Oct 16, 2020
+79
Q
S
L
Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health. Folkersen et al. report the first results from the SCALLOP consortium, a collaborative framework for pQTL mapping and biomarker analysis of proteins on the Olink platform. A total of 315 primary and 136 secondary pQTLs for 85 circulating cardiovascular proteins from over 30,000 individuals were identified and replicated to yield new insights for translational studies and drug development.
0
Citation455
0
Save
0

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels

Adrienne Tin et al.Oct 1, 2019
+97
V
P
A
Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits. A trans-ancestry genome-wide association study of serum urate levels identifies 183 loci influencing this trait. Enrichment analyses, fine-mapping and colocalization with gene expression in 47 tissues implicate the kidney and liver as key target organs and prioritize potential causal genes.
0
Citation306
0
Save
0

Poor replication of candidate genes for major depressive disorder using genome-wide association data

Fokko Bosker et al.Mar 30, 2010
+13
I
C
F
Data from the Genetic Association Information Network (GAIN) genome-wide association study (GWAS) in major depressive disorder (MDD) were used to explore previously reported candidate gene and single-nucleotide polymorphism (SNP) associations in MDD. A systematic literature search of candidate genes associated with MDD in case-control studies was performed before the results of the GAIN MDD study became available. Measured and imputed candidate SNPs and genes were tested in the GAIN MDD study encompassing 1738 cases and 1802 controls. Imputation was used to increase the number of SNPs from the GWAS and to improve coverage of SNPs in the candidate genes selected. Tests were carried out for individual SNPs and the entire gene using different statistical approaches, with permutation analysis as the final arbiter. In all, 78 papers reporting on 57 genes were identified, from which 92 SNPs could be mapped. In the GAIN MDD study, two SNPs were associated with MDD: C5orf20 (rs12520799; P=0.038; odds ratio (OR) AT=1.10, 95% CI 0.95-1.29; OR TT=1.21, 95% confidence interval (CI) 1.01-1.47) and NPY (rs16139; P=0.034; OR C allele=0.73, 95% CI 0.55-0.97), constituting a direct replication of previously identified SNPs. At the gene level, TNF (rs76917; OR T=1.35, 95% CI 1.13-1.63; P=0.0034) was identified as the only gene for which the association with MDD remained significant after correction for multiple testing. For SLC6A2 (norepinephrine transporter (NET)) significantly more SNPs (19 out of 100; P=0.039) than expected were associated while accounting for the linkage disequilibrium (LD) structure. Thus, we found support for involvement in MDD for only four genes. However, given the number of candidate SNPs and genes that were tested, even these significant may well be false positives. The poor replication may point to publication bias and false-positive findings in previous candidate gene studies, and may also be related to heterogeneity of the MDD phenotype as well as contextual genetic or environmental factors.
0
Citation299
0
Save
84

Influences of rare protein-coding genetic variants on the human plasma proteome in 50,829 UK Biobank participants

Ryan Dhindsa et al.Oct 11, 2022
+22
C
E
R
Abstract Combining human genomics with proteomics is becoming a powerful tool for drug discovery. Associations between genetic variants and protein levels can uncover disease mechanisms, clinical biomarkers, and candidate drug targets. To date, most population-level proteogenomic studies have focused on common alleles through genome-wide association studies (GWAS). Here, we studied the contribution of rare protein-coding variants to 1,472 plasma proteins abundances measured via the Olink Explore 1536 assay in 50,829 UK Biobank human exomes. Through a variant-level exome-wide association study (ExWAS), we identified 3,674 rare and significant protein quantitative trait loci (pQTLs), of which 76% were undetected in a prior GWAS performed on the same cohort, and we found that rare pQTLs are less likely to be random in their variant effect annotation. In gene-based collapsing analyses, we identified an additional 166 significant gene-protein pQTL signals that were undetected through single-variant analyses. Of the total 456 protein-truncating variant (PTV)-driven cis -pQTLs in the gene-based collapsing analysis, 99.3% were associated with decreased protein levels. We demonstrate how this resource can identify allelic series and propose biomarkers for several candidate therapeutic targets, including GRN, HSD17B13, NLRC4 , and others. Finally, we introduce a new collapsing analysis framework that combines PTVs with missense cis -pQTLs that are associated with decreased protein abundance to bolster genetic discovery statistical power. Our results collectively highlight a considerable role for rare variation in plasma protein abundance and demonstrate the utility of plasma proteomics in gene discovery and unravelling mechanisms of action.
84
Citation12
0
Save
0

Tissue-Specific Alteration of Metabolic Pathways Influences Glycemic Regulation

Natasha Ng et al.Oct 3, 2019
+260
J
S
N
Summary Metabolic dysregulation in multiple tissues alters glucose homeostasis and influences risk for type 2 diabetes (T2D). To identify pathways and tissues influencing T2D-relevant glycemic traits (fasting glucose [FG], fasting insulin [FI], two-hour glucose [2hGlu] and glycated hemoglobin [HbA1c]), we investigated associations of exome-array variants in up to 144,060 individuals without diabetes of multiple ancestries. Single-variant analyses identified novel associations at 21 coding variants in 18 novel loci, whilst gene-based tests revealed signals at two genes, TF (HbA1c) and G6PC (FG, FI). Pathway and tissue enrichment analyses of trait-associated transcripts confirmed the importance of liver and kidney for FI and pancreatic islets for FG regulation, implicated adipose tissue in FI and the gut in 2hGlu, and suggested a role for the non-endocrine pancreas in glucose homeostasis. Functional studies demonstrated that a novel FG/FI association at the liver-enriched G6PC transcript was driven by multiple rare loss-of-function variants. The FG/HbA1c-associated, islet-specific G6PC2 transcript also contained multiple rare functional variants, including two alleles within the same codon with divergent effects on glucose levels. Our findings highlight the value of integrating genomic and functional data to maximize biological inference. Highlights 23 novel coding variant associations (single-point and gene-based) for glycemic traits 51 effector transcripts highlighted different pathway/tissue signatures for each trait The exocrine pancreas and gut influence fasting and 2h glucose, respectively Multiple variants in liver-enriched G6PC and islet-specific G6PC2 influence glycemia
0
Citation11
0
Save
3

An atlas of genetic scores to predict multi-omic traits

Yu Xu et al.Apr 17, 2022
+36
E
P
Y
Abstract Genetically predicted levels of multi-omic traits can uncover the molecular underpinnings of common phenotypes in a highly efficient manner. Here, we utilised a large cohort (INTERVAL; N=50,000 participants) with extensive multi-omic data for plasma proteomics (SomaScan, N=3,175; Olink, N=4,822), plasma metabolomics (Metabolon HD4, N=8,153), serum metabolomics (Nightingale, N=37,359), and whole blood Illumina RNA sequencing (N=4,136). We used machine learning to train genetic scores for 17,227 molecular traits, including 10,521 which reached Bonferroni-adjusted significance. We evaluated genetic score performances in external validation across European, Asian and African American ancestries, and assessed their longitudinal stability within diverse individuals. We demonstrated the utility of these multi-omic genetic scores by quantifying the genetic control of biological pathways and by generating a synthetic multi-omic dataset of UK Biobank to identify disease associations using a phenome-wide scan. Finally, we developed a portal ( OmicsPred.org ) to facilitate public access to all genetic scores and validation results as well as to serve as a platform for future extensions and enhancements of multi-omic genetic scores.
3
Citation7
0
Save
0

Meta-analysis of exome array data identifies six novel genetic loci for lung function

Alan Wright et al.Jul 17, 2017
+111
L
V
A
Over 90 regions of the genome have been associated with lung function to date, many of which have also been implicated in chronic obstructive pulmonary disease (COPD). We carried out meta-analyses of exome array data and three lung function measures: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and the ratio of FEV1 to FVC (FEV1/FVC). These analyses by the SpiroMeta and CHARGE consortia included 60,749 individuals of European ancestry from 23 studies, and 7,721 individuals of African Ancestry from 5 studies in the discovery stage, with follow-up in up to 111,556 independent individuals. We identified significant (P<2.8x10-7) associations with six SNPs: a nonsynonymous variant in RPAP1, which is predicted to be damaging, three intronic SNPs (SEC24C, CASC17 and UQCC1) and two intergenic SNPs near to LY86 and FGF10. eQTL analyses found evidence for regulation of gene expression at three signals and implicated several genes including TYRO3 and PLAU. Further interrogation of these loci could provide greater understanding of the determinants of lung function and pulmonary disease.
Load More