NH
Ni Huang
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
43
(74% Open Access)
Cited by:
8,704
h-index:
41
/
i10-index:
63
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

SARS-CoV-2 infection of the oral cavity and saliva

Ni Huang et al.Mar 25, 2021
Despite signs of infection-including taste loss, dry mouth and mucosal lesions such as ulcerations, enanthema and macules-the involvement of the oral cavity in coronavirus disease 2019 (COVID-19) is poorly understood. To address this, we generated and analyzed two single-cell RNA sequencing datasets of the human minor salivary glands and gingiva (9 samples, 13,824 cells), identifying 50 cell clusters. Using integrated cell normalization and annotation, we classified 34 unique cell subpopulations between glands and gingiva. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral entry factors such as ACE2 and TMPRSS members were broadly enriched in epithelial cells of the glands and oral mucosae. Using orthogonal RNA and protein expression assessments, we confirmed SARS-CoV-2 infection in the glands and mucosae. Saliva from SARS-CoV-2-infected individuals harbored epithelial cells exhibiting ACE2 and TMPRSS expression and sustained SARS-CoV-2 infection. Acellular and cellular salivary fractions from asymptomatic individuals were found to transmit SARS-CoV-2 ex vivo. Matched nasopharyngeal and saliva samples displayed distinct viral shedding dynamics, and salivary viral burden correlated with COVID-19 symptoms, including taste loss. Upon recovery, this asymptomatic cohort exhibited sustained salivary IgG antibodies against SARS-CoV-2. Collectively, these data show that the oral cavity is an important site for SARS-CoV-2 infection and implicate saliva as a potential route of SARS-CoV-2 transmission.
0
Citation647
0
Save
0

Characterising and Predicting Haploinsufficiency in the Human Genome

Ni Huang et al.Oct 14, 2010
Haploinsufficiency, wherein a single functional copy of a gene is insufficient to maintain normal function, is a major cause of dominant disease. Human disease studies have identified several hundred haploinsufficient (HI) genes. We have compiled a map of 1,079 haplosufficient (HS) genes by systematic identification of genes unambiguously and repeatedly compromised by copy number variation among 8,458 apparently healthy individuals and contrasted the genomic, evolutionary, functional, and network properties between these HS genes and known HI genes. We found that HI genes are typically longer and have more conserved coding sequences and promoters than HS genes. HI genes exhibit higher levels of expression during early development and greater tissue specificity. Moreover, within a probabilistic human functional interaction network HI genes have more interaction partners and greater network proximity to other known HI genes. We built a predictive model on the basis of these differences and annotated 12,443 genes with their predicted probability of being haploinsufficient. We validated these predictions of haploinsufficiency by demonstrating that genes with a high predicted probability of exhibiting haploinsufficiency are enriched among genes implicated in human dominant diseases and among genes causing abnormal phenotypes in heterozygous knockout mice. We have transformed these gene-based haploinsufficiency predictions into haploinsufficiency scores for genic deletions, which we demonstrate to better discriminate between pathogenic and benign deletions than consideration of the deletion size or numbers of genes deleted. These robust predictions of haploinsufficiency support clinical interpretation of novel loss-of-function variants and prioritization of variants and genes for follow-up studies.
0
Citation609
0
Save
0

Large, rare chromosomal deletions associated with severe early-onset obesity

Elena Bochukova et al.Dec 6, 2009
Obesity is a highly heritable disorder but the genetic associations reported to date account for only a small percentage of the inherited variation in body mass index. Two groups report deletions on chromosome16p11.2 that may explain part of the 'missing heritability' in terms of 'high-penetrance' mutations that are rare but when present are very often associated with severe obesity. This is in contrast to more common gene defects that are less closely associated with clinical symptoms. Bochukova et al. identified rare recurrent copy number variants in 300 patients with severe early-onset obesity, caused by deletions involving several genes including SH2B1, known to be involved in leptin and insulin signalling. Many of the patients also suffered neurodevelopmental disorders. Walters et al. identified deletions of at least 593 kilobases on chromosome 16p11.2 in 31 patients with a previously unrecognized type of extreme obesity. The strategy they used to identify the lesion — using small well-phenotyped cohorts of extreme phenotypes with targeted follow-up in genome-wide association studies and population cohorts — shows promise as a means of identifying 'missing heritability' in complex metabolic diseases more generally. The contribution of copy number variation to obesity — a highly heritable and genetically heterogeneous disorder — is investigated in 300 Caucasian patients to reveal that large, rare deletions are significantly enriched in patients compared to controls. Several rare copy number variants are identified that are recurrent in patients but absent or at much lower prevalence in controls. Obesity is a highly heritable and genetically heterogeneous disorder1. Here we investigated the contribution of copy number variation to obesity in 300 Caucasian patients with severe early-onset obesity, 143 of whom also had developmental delay. Large (>500 kilobases), rare (<1%) deletions were significantly enriched in patients compared to 7,366 controls (P < 0.001). We identified several rare copy number variants that were recurrent in patients but absent or at much lower prevalence in controls. We identified five patients with overlapping deletions on chromosome 16p11.2 that were found in 2 out of 7,366 controls (P < 5 × 10-5). In three patients the deletion co-segregated with severe obesity. Two patients harboured a larger de novo 16p11.2 deletion, extending through a 593-kilobase region previously associated with autism2,3,4 and mental retardation5; both of these patients had mild developmental delay in addition to severe obesity. In an independent sample of 1,062 patients with severe obesity alone, the smaller 16p11.2 deletion was found in an additional two patients. All 16p11.2 deletions encompass several genes but include SH2B1, which is known to be involved in leptin and insulin signalling6. Deletion carriers exhibited hyperphagia and severe insulin resistance disproportionate for the degree of obesity. We show that copy number variation contributes significantly to the genetic architecture of human obesity.
0
Citation548
0
Save
0

Single-cell multi-omics analysis of the immune response in COVID-19

Emily Stephenson et al.Apr 20, 2021
Abstract Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts ( CD16 + C1QA/B/C + ) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34 + hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8 + T cells and an increased ratio of CD8 + effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.
0
Citation537
0
Save
0

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2

Robin Walters et al.Feb 1, 2010
Obesity is a highly heritable disorder but the genetic associations reported to date account for only a small percentage of the inherited variation in body mass index. Two groups report deletions on chromosome16p11.2 that may explain part of the 'missing heritability' in terms of 'high-penetrance' mutations that are rare but when present are very often associated with severe obesity. This is in contrast to more common gene defects that are less closely associated with clinical symptoms. Bochukova et al. identified rare recurrent copy number variants in 300 patients with severe early-onset obesity, caused by deletions involving several genes including SH2B1, known to be involved in leptin and insulin signalling. Many of the patients also suffered neurodevelopmental disorders. Walters et al. identified deletions of at least 593 kilobases on chromosome 16p11.2 in 31 patients with a previously unrecognized type of extreme obesity. The strategy they used to identify the lesion — using small well-phenotyped cohorts of extreme phenotypes with targeted follow-up in genome-wide association studies and population cohorts — shows promise as a means of identifying 'missing heritability' in complex metabolic diseases more generally. Recently, numerous single nucleotide polymorphisms have been identified as being associated with obesity, but these loci together account for only a small fraction of the known heritable component. Here, an association is reported between rare deletions of at least 593 kilobases at 16p11.2 and a highly penetrant form of obesity. The strategy used of combining study of extreme phenotypes with targeted follow-up is promising for identifying missing heritability in obesity. Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution1. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component1. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge2. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’4 in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
0
Citation520
0
Save
0

Dynamic landscape and regulation of RNA editing in mammals

Meng Tan et al.Oct 10, 2017
Using the GTEx data and others, a comprehensive analysis of adenosine-to-inosine RNA editing in mammals is presented; targets of the various ADAR enzymes are identified, as are several potential regulators of editing, such as AIMP2. The GTEx (Genotype-Tissue Expression) Consortium has established a reference catalogue and associated tissue biobank for gene-expression levels across individuals for diverse tissues of the human body, with a broad sampling of normal, non-diseased human tissues from postmortem donors. The consortium now presents the deepest survey of gene expression across multiple tissues and individuals to date, encompassing 7,051 samples from 449 donors across 44 human tissues. Barbara Engelhardt and colleagues characterize the relationship between genetic variation and gene expression, and find that most genes are regulated by genetic variation near to the affected gene. In accompanying GTEx studies, Alexis Battle, Stephen Montgomery and colleagues examine the effect of rare genetic variation on gene expression across human tissues, Daniel MacArthur and colleagues systematically survey the landscape of X chromosome inactivation in human tissues, and Jin Billy Li and colleagues provide a comprehensive cross-species analysis of adenosine-to-inosine RNA editing in mammals. In an accompanying News & Views, Michelle Ward and Yoav Gilad put the latest results in context and discuss how these findings are helping to crack the regulatory code of the human genome. Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules1. Although many editing sites have recently been discovered2,3,4,5,6,7, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood8,9,10. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
0
Citation517
0
Save
0

Evidence for 28 genetic disorders discovered by combining healthcare and research data

Alejandro Sifrim et al.Oct 14, 2020
De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent–offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders. By integrating healthcare and exome-sequencing data from parent–offspring trios of patients with developmental disorders, 28 genes that had not previously been associated with developmental disorders were identified.
0
Citation430
0
Save
Load More