AL
Arielle Leon
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
499
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Survey of spiking in the mouse visual system reveals functional hierarchy

Joshua Siegle et al.Jan 20, 2021
+87
S
X
J
The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset—part of the Allen Brain Observatory2—that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures—response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale—are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas. A large, open dataset containing parallel recordings from six visual cortical and two thalamic areas of the mouse brain is presented, from which the relative timing of activity in response to visual stimuli and behaviour is used to construct a hierarchy scheme that corresponds to anatomical connectivity data.
0

A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain

Zizhen Yao et al.Dec 13, 2023
+98
M
C
Z
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
0
Citation73
-1
Save
72

Multiplane Mesoscope reveals distinct cortical interactions following expectation violations

N. Orlova et al.Oct 8, 2020
+29
D
Н
N
Cortical columns interact through dynamic routing of neuronal activity. Monitoring these interactions in animals performing a behavioral task as close as possible to real time will advance our understanding of cortical computation. We developed the Multiplane Mesoscope which combines three established concepts in microscopy: spatio-temporal multiplexing, remote focusing, and random-access mesoscopy. With the Multiplane Mesoscope, we recorded excitatory and inhibitory neuronal subpopulations simultaneously across two cortical areas and multiple cortical layers in behaving mice. In the context of a visual detection of change task, we used this novel platform to study cortical areas interactions and quantified the cell-type specific distribution of neuronal correlations across a set of visual areas and layers. We found that distinct cortical subnetworks represent expected and unexpected visual events. Our findings demonstrate that expectation violations modify signal routing across cortical columns and establish the Allen Brain Observatory Multiplane Mesoscope as a unique platform to study signal routing across connected pairs of cortical areas.
72
Citation11
0
Save
0

Experience shapes activity dynamics and stimulus coding of VIP inhibitory and excitatory cells in visual cortex

Marina Garrett et al.Jun 28, 2019
+10
K
S
M
ABSTRACT Cortical circuits are flexible and can change with experience and learning. However, the effects of experience on specific cell types, including distinct inhibitory types, are not well understood. Here we investigated how excitatory and VIP inhibitory cells in layer 2/3 of mouse visual cortex were impacted by visual experience in the context of a behavioral task. Mice learned to perform an image change detection task with a set of eight natural scene images, viewing these images thousands of times. Subsequently, during 2-photon imaging experiments, mice performed the task with these familiar images and three additional sets of novel images. Novel images evoked stronger overall activity in both excitatory and VIP populations, and familiar images were more sparsely coded by excitatory cells. The temporal dynamics of VIP activity differed markedly between novel and familiar images: VIP cells were stimulus-driven by novel images but displayed ramping activity during the inter-stimulus interval for familiar images. Moreover, when a familiar stimulus was omitted from an expected sequence, VIP cells showed extended ramping activity until the subsequent image presentation. This prominent shift in response dynamics suggests that VIP cells may adopt different modes of processing during familiar versus novel conditions. HIGHLIGHTS Experience with natural images in a change detection task reduces overall activity of cortical excitatory and VIP inhibitory cells Encoding of natural images is sharpened with experience in excitatory neurons VIP cells are stimulus-driven by novel images but show pre-stimulus ramping for familiar images VIP cells show strong ramping activity during the omission of an expected stimulus
0

Multi-plane Imaging of Neural Activity From the Mammalian Brain Using a Fast-switching Liquid Crystal Spatial Light Modulator

Rui Li et al.Dec 30, 2018
+13
J
R
R
We report a novel two-photon fluorescence microscope based on a fast-switching liquid crystal spatial light modulator and a pair of galvo-resonant scanners for large-scale recording of neural activity from the mammalian brain. The utilized imaging technique is capable of monitoring large populations of neurons spread across different layers of the neocortex in awake and behaving mice. During each imaging session, all visual stimulus driven somatic activity could be recorded in the same behavior state. We observed heterogeneous response to different types of visual stimuli from ~ 3,300 excitatory neurons reaching from layer II/III to V of the striate cortex.
0
Citation5
0
Save
659

A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain

Zizhen Yao et al.Mar 6, 2023
+69
M
C
Z
The mammalian brain is composed of millions to billions of cells that are organized into numerous cell types with specific spatial distribution patterns and structural and functional properties. An essential step towards understanding brain function is to obtain a parts list, i.e., a catalog of cell types, of the brain. Here, we report a comprehensive and high-resolution transcriptomic and spatial cell type atlas for the whole adult mouse brain. The cell type atlas was created based on the combination of two single-cell-level, whole-brain-scale datasets: a single-cell RNA-sequencing (scRNA-seq) dataset of ~7 million cells profiled, and a spatially resolved transcriptomic dataset of ~4.3 million cells using MERFISH. The atlas is hierarchically organized into five nested levels of classification: 7 divisions, 32 classes, 306 subclasses, 1,045 supertypes and 5,200 clusters. We systematically analyzed the neuronal, non-neuronal, and immature neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell type organization in different brain regions, in particular, a dichotomy between the dorsal and ventral parts of the brain: the dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. We also systematically characterized cell-type specific expression of neurotransmitters, neuropeptides, and transcription factors. The study uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types across the brain, suggesting they mediate a myriad of modes of intercellular communications. Finally, we found that transcription factors are major determinants of cell type classification in the adult mouse brain and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole-mouse-brain transcriptomic and spatial cell type atlas establishes a benchmark reference atlas and a foundational resource for deep and integrative investigations of cell type and circuit function, development, and evolution of the mammalian brain.
0

A large-scale, standardized physiological survey reveals higher order coding throughout the mouse visual cortex

Saskia Vries et al.Jun 29, 2018
+69
A
C
S
To understand how the brain processes sensory information to guide behavior, we must know how stimulus representations are transformed throughout the visual cortex. Here we report an open, large-scale physiological survey of neural activity in the awake mouse visual cortex: the Allen Brain Observatory Visual Coding dataset. This publicly available dataset includes cortical activity from nearly 60,000 neurons collected from 6 visual areas, 4 layers, and 12 transgenic mouse lines from 221 adult mice, in response to a systematic set of visual stimuli. Using this dataset, we reveal functional differences across these dimensions and show that visual cortical responses are sparse but correlated. Surprisingly, responses to different stimuli are largely independent, e.g. whether a neuron responds to natural scenes provides no information about whether it responds to natural movies or to gratings. We show that these phenomena cannot be explained by standard local filter-based models, but are consistent with multi-layer hierarchical computation, as found in deeper layers of standard convolutional neural networks.
0

A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas

Joshua Siegle et al.Oct 16, 2019
+87
Y
A
J
The mammalian visual system, from retina to neocortex, has been extensively studied at both anatomical and functional levels. Anatomy indicates the corticothalamic system is hierarchical, but characterization of cellular-level functional interactions across multiple levels of this hierarchy is lacking, partially due to the challenge of simultaneously recording activity across numerous regions. Here, we describe a large, open dataset (part of the Allen Brain Observatory ) that surveys spiking from units in six cortical and two thalamic regions responding to a battery of visual stimuli. Using spike cross-correlation analysis, we find that inter-area functional connectivity mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas . Classical functional measures of hierarchy, including visual response latency, receptive field size, phase-locking to a drifting grating stimulus, and autocorrelation timescale are all correlated with the anatomical hierarchy. Moreover, recordings during a visual task support the behavioral relevance of hierarchical processing. Overall, this dataset and the hierarchy we describe provide a foundation for understanding coding and dynamics in the mouse corticothalamic visual system.
46

Stimulus novelty uncovers coding diversity in visual cortical circuits

Marina Garrett et al.Feb 15, 2023
+81
A
C
M
The detection of novel stimuli is critical to learn and survive in a dynamic environment. Though novel stimuli powerfully affect brain activity, their impact on specific cell types and circuits is not well understood. Disinhibition is one candidate mechanism for novelty-induced enhancements in activity. Here we characterize the impact of stimulus novelty on disinhibitory circuit components using longitudinal 2-photon calcium imaging of Vip, Sst, and excitatory populations in the mouse visual cortex. Mice learn a behavioral task with stimuli that become highly familiar, then are tested on both familiar and novel stimuli. Mice consistently perform the task with novel stimuli, yet responses to stimulus presentations and stimulus omissions are dramatically altered. Further, we find that novelty modifies coding of visual as well as behavioral and task information. At the population level, the direction of these changes is consistent with engagement of the Vip-Sst disinhibitory circuit. At the single cell level, we identify separate clusters of Vip, Sst, and excitatory cells with unique patterns of novelty-induced coding changes. This study and the accompanying open-access dataset reveals the impact of novelty on sensory and behavioral representations in visual cortical circuits and establishes novelty as a key driver of cellular functional diversity.