XZ
Xiaowei Zhuang
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Harvard University, East China University of Science and Technology, Hefei University of Technology
+ 7 more
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
24
(71% Open Access)
Cited by:
501
h-index:
98
/
i10-index:
178
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain

Zizhen Yao et al.Mar 9, 2024
+98
M
C
Z
The mammalian brain consists of millions to billions of cells that are organized into many cell types with specific spatial distribution patterns and structural and functional properties1-3. Here we report a comprehensive and high-resolution transcriptomic and spatial cell-type atlas for the whole adult mouse brain. The cell-type atlas was created by combining a single-cell RNA-sequencing (scRNA-seq) dataset of around 7 million cells profiled (approximately 4.0 million cells passing quality control), and a spatial transcriptomic dataset of approximately 4.3 million cells using multiplexed error-robust fluorescence in situ hybridization (MERFISH). The atlas is hierarchically organized into 4 nested levels of classification: 34 classes, 338 subclasses, 1,201 supertypes and 5,322 clusters. We present an online platform, Allen Brain Cell Atlas, to visualize the mouse whole-brain cell-type atlas along with the single-cell RNA-sequencing and MERFISH datasets. We systematically analysed the neuronal and non-neuronal cell types across the brain and identified a high degree of correspondence between transcriptomic identity and spatial specificity for each cell type. The results reveal unique features of cell-type organization in different brain regions-in particular, a dichotomy between the dorsal and ventral parts of the brain. The dorsal part contains relatively fewer yet highly divergent neuronal types, whereas the ventral part contains more numerous neuronal types that are more closely related to each other. Our study also uncovered extraordinary diversity and heterogeneity in neurotransmitter and neuropeptide expression and co-expression patterns in different cell types. Finally, we found that transcription factors are major determinants of cell-type classification and identified a combinatorial transcription factor code that defines cell types across all parts of the brain. The whole mouse brain transcriptomic and spatial cell-type atlas establishes a benchmark reference atlas and a foundational resource for integrative investigations of cellular and circuit function, development and evolution of the mammalian brain.
0
Citation73
-1
Save
59

Deep learning and alignment of spatially-resolved whole transcriptomes of single cells in the mouse brain with Tangram

Tommaso Biancalani et al.Oct 11, 2023
+17
L
G
T
Charting a biological atlas of an organ, such as the brain, requires us to spatially-resolve whole transcriptomes of single cells, and to relate such cellular features to the histological and anatomical scales. Single-cell and single-nucleus RNA-Seq (sc/snRNA-seq) can map cells comprehensively 5,6 , but relating those to their histological and anatomical positions in the context of an organ’s common coordinate framework remains a major challenge and barrier to the construction of a cell atlas 7–10 . Conversely, Spatial Transcriptomics allows for in-situ measurements 11–13 at the histological level, but at lower spatial resolution and with limited sensitivity. Targeted in situ technologies 1–3 solve both issues, but are limited in gene throughput which impedes profiling of the entire transcriptome. Finally, as samples are collected for profiling, their registration to anatomical atlases often require human supervision, which is a major obstacle to build pipelines at scale. Here, we demonstrate spatial mapping of cells, histology, and anatomy in the somatomotor area and the visual area of the healthy adult mouse brain. We devise Tangram, a method that aligns snRNA-seq data to various forms of spatial data collected from the same brain region, including MERFISH 1 , STARmap 2 , smFISH 3 , and Spatial Transcriptomics 4 (Visium), as well as histological images and public atlases. Tangram can map any type of sc/snRNA-seq data, including multi-modal data such as SHARE-seq data 5 , which we used to reveal spatial patterns of chromatin accessibility. We equipped Tangram with a deep learning computer vision pipeline, which allows for automatic identification of anatomical annotations on histological images of mouse brain. By doing so, Tangram reconstructs a genome-wide, anatomically-integrated, spatial map of the visual and somatomotor area with ∼30,000 genes at single-cell resolution, revealing spatial gene expression and chromatin accessibility patterning beyond current limitation of in-situ technologies.
59
Citation31
0
Save
207

A multimodal cell census and atlas of the mammalian primary motor cortex

Ricky Adkins et al.Oct 13, 2023
+254
S
A
R
ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
207
Citation18
0
Save
32

CTCF Mediates Dosage and Sequence-context-dependent Transcriptional Insulation through Formation of Local Chromatin Domains

Hui Huang et al.Oct 24, 2023
+14
A
Q
H
Abstract Insulators play a critical role in spatiotemporal gene expression in metazoans by separating active and repressive chromatin domains and preventing inappropriate enhancer-promoter contacts. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here, we explore the sequence requirements of CTCF-mediated transcriptional insulation with the use of a sensitive insulator reporter assay in mouse embryonic stem cells. We find that insulation potency depends on the number of CTCF binding sites in tandem. Furthermore, CTCF-mediated insulation is dependent on DNA sequences flanking its core binding motifs, and CTCF binding sites at topologically associating domain(TAD) boundaries are more likely to function as insulators than those outside TAD boundaries, independent of binding strength. Using chromosomal conformation capture assays and high-resolution chromatin imaging techniques, we demonstrate that insulators form local chromatin domain boundaries and reduce enhancer-promoter contacts. Taken together, our results provide strong genetic, molecular, and structural evidence connecting chromatin topology to the action of insulators in the mammalian genome.
32
Paper
Citation13
0
Save
4

Conservation and divergence in cortical cellular organization between human and mouse revealed by single-cell transcriptome imaging

Rongxin Fang et al.Oct 24, 2023
+6
M
C
R
Abstract The human cerebral cortex has tremendous cellular diversity and complex cellular organization that are essential for brain function. How different types of cells are organized and interact with each other in the human cortex, and how cellular organizations and interaction patterns vary across species are, however, unclear. Here, we performed spatially resolved single-cell expression profiling of 4,000 genes in human middle and superior temporal gyrus using multiplexed error-robust fluorescence in situ hybridization (MERFISH). We identified >100 neuronal and non-neuronal cell populations with distinct transcriptional signatures, generated a molecularly defined and spatially resolved cell atlas of these brain regions, and analyzed cell-cell interactions in a cell-type-specific manner. Comparison with the mouse cortex showed conservation in the laminar organization of cells and substantial divergence in cell-cell interactions between human and mouse. Notably, our data revealed a drastic increase in interactions between neurons and non-neuronal cells in the human cortex, uncovered human-specific cell-cell interaction patterns, and identified potential ligand-receptor basis of microglia-neuron interactions.
4
Paper
Citation6
0
Save
11

Proteomic and functional analyses of the periodic membrane skeleton in neurons

Ruobo Zhou et al.Oct 24, 2023
+6
R
B
R
Abstract Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. The molecular composition and functions of the MPS remain incompletely understood. Here, using co-immunoprecipitation and mass spectrometry, we identified hundreds of candidate MPS-interacting proteins that span diverse functional categories. We validated representative proteins in several of these categories, including previously unknown MPS structural components, as well as motor proteins, cell adhesion molecules, ion channels, and signaling proteins, demonstrating periodic distributions of ∼20 proteins in neurons using super-resolution imaging. Genetic perturbations of the MPS and its interacting proteins further suggested functional roles of the MPS in axon-axon and axon-dendrite interactions and in axon diameter regulation, and implicated the involvement of MPS interactions with cell adhesion molecules and non-muscle myosin in these roles. These results provide new insights into the interactome of the MPS, and suggest new functions of the MPS in neurons.
11
Paper
Citation5
0
Save
134

Spatially resolved epigenomic profiling of single cells in complex tissues

Lu Tian et al.Oct 24, 2023
X
C
L
SUMMARY The recent development of spatial omics methods enables single-cell profiling of the transcriptome and the 3D genome organization in a spatially resolved manner. Expanding the repertoire of spatial omics tools, a spatial epigenomics method will accelerate our understanding of the spatial regulation of cell and tissue functions. Here, we report a method for spatially resolved profiling of epigenomes in single cells using in-situ tagmentation and transcription followed by highly multiplexed imaging. We profiled histone modifications marking active promoters and enhancers, H3K4me3 and H3K27ac, and generated high-resolution spatial atlas of hundreds of active promoters and putative enhancers in embryonic and adult mouse brains. Our results further revealed putative promoter-enhancer pairs and enhancer hubs regulating the expression of developmentally important genes. We envision this approach will be generally applicable to spatial profiling of epigenetic modifications and DNA-binding proteins, advancing our understanding of how gene expression is spatiotemporally regulated by the epigenome.
134
Citation3
0
Save
1

Decoding molecular and cellular heterogeneity of nucleus accumbens with high-throughput scRNA-seq and MERFISH

Renchao Chen et al.Oct 24, 2023
+6
M
T
R
Abstract The nucleus accumbens (NAc) plays an important role in regulating multiple behaviors and its dysfunction has been linked to many neural disorders. However, the molecular, cellular and anatomic heterogeneity underlying its functional diversity remains incompletely understood. Here, we generate a cell census of the mouse NAc using high-throughput single cell RNA sequencing and multiplexed error-robust FISH, revealing a high level of cell heterogeneity in this brain region. We show that the transcriptional and spatial diversity of neuron subtypes underlie NAc’s anatomic and functional heterogeneity, and possibly contribute to the pathogenesis of different neurological disorders. These findings explain how the seemingly simple neuronal composition of the NAc achieves its highly heterogenous structure and diverse functions. Collectively, our study generates a spatially resolved cell taxonomy for understanding the NAc structure and function, which demonstrates the importance of combining molecular and spatial information in revealing the fundamental features of the nervous system.
1
Paper
Citation2
0
Save
1

Mapping the cellular and molecular organization of mouse cerebral aging by single-cell transcriptome imaging

William Allen et al.Oct 24, 2023
+2
Z
T
W
Summary The cellular diversity and complex organization of the brain have hindered systematic characterization of age-related changes in its cellular and molecular architecture, limiting our ability to understand the mechanisms underlying its functional decline during aging. Here we generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using spatially resolved single-cell transcriptomics and quantified the changes in gene expression and spatial organization of major cell types in these brain regions over the lifespan of mice. We observed substantially more pronounced changes in the composition, gene expression and spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and immune cell activation during aging, particularly enriched in subcortical white matter, and identified both similarities and notable differences in cell activation patterns induced by aging and systemic inflammatory challenge. These results provide critical insights into age-related decline and inflammation in the brain.
1
Citation1
0
Save
28

Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics

Meng Zhang et al.Oct 11, 2023
+4
B
S
M
Abstract A mammalian brain is comprised of numerous cell types organized in an intricate manner to form functional neural circuits. Single-cell RNA sequencing provides a powerful approach to identify cell types based on their gene expression profiles and has revealed many distinct cell populations in the brain 1-3 . Single-cell epigenomic profiling 4,5 further provides information on gene-regulatory signatures of different cell types. Understanding how different cell types contribute to brain function, however, requires knowledge of their spatial organization and connectivity, which is not preserved in sequencing-based methods that involve cell dissociation 3,6 . Here, we used an in situ single-cell transcriptome-imaging method, multiplexed error-robust fluorescence in situ hybridization (MERFISH) 7 , to generate a molecularly defined and spatially resolved cell atlas of the mouse primary motor cortex (MOp). We profiled ∼300,000 cells in the MOp, identified 95 neuronal and non-neuronal cell clusters, and revealed a complex spatial map in which not only excitatory neuronal clusters but also most inhibitory neuronal clusters adopted layered organizations. Notably, intratelencephalic (IT) cells, the largest branch of neurons in the MOp, formed a continuous spectrum of cells with gradual changes in both gene expression profiles and cortical depth positions in a highly correlated manner. Furthermore, we integrated MERFISH with retrograde tracing to probe the projection targets for different MOp neuronal cell types and found that projections of MOp neurons to other cortical regions formed a many-to-many network with each target region receiving input preferentially from a different composition of IT clusters. Overall, our results provide a high-resolution spatial and projection map of molecularly defined cell types in the MOp. We anticipate that the imaging platform described here can be broadly applied to create high-resolution cell atlases of a wide range of systems.
Load More