SR
Stefan Rensing
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
35
(86% Open Access)
Cited by:
9,246
h-index:
63
/
i10-index:
152
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Ectocarpus genome and the independent evolution of multicellularity in brown algae

J. Cock et al.Jun 1, 2010
The genome of Ectocarpus, a model organism for brown algae, has been sequenced. Brown algae are complex photosynthetic organisms that have adapted to life in rocky coastal environments. Genome analysis sheds light on this adaptation and reveals an extended set of light-harvesting and pigment biosynthesis genes and novel metabolic processes such as halide metabolism. Comparative genomic analyses highlight the likely importance of a family of receptor kinases and related molecules in the evolution of multicellularity in plants, animals and brown algae. The genome of Ectocarpus siliculosis, a model for the study of brown algae, has been sequenced. These seaweeds are complex photosynthetic organisms that have adapted to rocky coastal environments. Genome analysis sheds light on this adaptation, revealing an extended set of light-harvesting and pigment biosynthesis genes, and new metabolic processes such as halide metabolism. Comparative analyses are also significant with respect to the evolution of multicellularity in plants, animals and brown algae. Brown algae (Phaeophyceae) are complex photosynthetic organisms with a very different evolutionary history to green plants, to which they are only distantly related1. These seaweeds are the dominant species in rocky coastal ecosystems and they exhibit many interesting adaptations to these, often harsh, environments. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity (Fig. 1). We report the 214 million base pair (Mbp) genome sequence of the filamentous seaweed Ectocarpus siliculosus (Dillwyn) Lyngbye, a model organism for brown algae2,3,4,5, closely related to the kelps6,7 (Fig. 1). Genome features such as the presence of an extended set of light-harvesting and pigment biosynthesis genes and new metabolic processes such as halide metabolism help explain the ability of this organism to cope with the highly variable tidal environment. The evolution of multicellularity in this lineage is correlated with the presence of a rich array of signal transduction genes. Of particular interest is the presence of a family of receptor kinases, as the independent evolution of related molecules has been linked with the emergence of multicellularity in both the animal and green plant lineages. The Ectocarpus genome sequence represents an important step towards developing this organism as a model species, providing the possibility to combine genomic and genetic2 approaches to explore these and other4,5 aspects of brown algal biology further.
0
Citation858
0
Save
0

Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis

Anne‐Sophie Denommé‐Pichon et al.Nov 25, 2013
The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.
0
Citation730
0
Save
0

Pan genome of the phytoplankton Emiliania underpins its global distribution

Betsy Read et al.Jun 11, 2013
Coccolithophores have influenced the global climate for over 200 million years. These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems. They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space. Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean. Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.
0
Paper
Citation478
0
Save
Load More