Paper
Document
Download
Flag content
105

Predicting the mutational drivers of future SARS-CoV-2 variants of concern

Authors
M. Cyrus Maher,Istvan Bartha
+20 authors
,Sergei Pond
Published
Feb 23, 2022
Show more
Save
TipTip
Document
Download
Flag content
105
TipTip
Save
Document
Download
Flag content

Abstract

SARS-CoV-2 evolution threatens vaccine- and natural infection–derived immunity and the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network–based protein sequence modeling and identified primary biological drivers of SARS-CoV-2 intrapandemic evolution. We found evidence that ACE2-mediated transmissibility and resistance to population-level host immunity has waxed and waned as a primary driver of SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator characteristic curve = 0.92 to 0.97) mutations that will spread, at up to 4 months in advance, across different phases of the pandemic. The behavior of the model was consistent with a plausible causal structure where epidemiological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. We validated this result against Omicron, showing elevated predictive scores for its component mutations before emergence and rapid score increase across daily forecasts during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.

Paper PDF

Empty State
This PDF hasn't been uploaded yet.
Do not upload any copyrighted content to the site, only open-access content.
or